You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/141046
Title: 
Aerobic exercise recovers disuse-induced atrophy through the stimulus of the LRP130/PGC-1α complex in aged rats
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Universidade de São Paulo (USP)
  • Universidade do Oeste Paulista (UNOESTE)
  • Universidade Norte do Paraná (UNOPAR)
ISSN: 
1758-535X
Sponsorship: 
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Sponsorship Process Number: 
FAPESP: 2011/14484-4
Abstract: 
Physical training has been shown to be important to the control of muscle mass during aging, through the activation of several pathways including, IGF1-AKT and PGC-1α. Also, it was demonstrated that LRP130, a component of the PGC-1α complex, is important for the PGC-1α-dependent transcription of several mitochondrial genes in vivo. To explore the role of physical training during aging, we investigated the effects on muscle recovery after short-term immobilization followed by 3 or 7 days with aerobic or resistance training. Using morphological (myofibrillar adenosine triphosphatase activity, to assess the total muscle fiber cross-sectional area (CSA) and the frequency of specific fiber types), biochemical (myosin heavy chain), and molecular analyses (quantitative real-time PCR, functional pathways analyses, and Western blot), our results indicated that after an atrophic stimulus, only animals subjected to aerobic training showed entire recovery of cross-sectional area; aerobic training reduced the ubiquitin–proteasome system components involved in muscle atrophy after 3 days of recovery, and the upregulation in PGC-1α expression enhanced the process of muscle recovery by inhibiting the FoxO pathway, with the possible involvement of LRP130. These results suggest that aerobic training enhanced the muscle regeneration process after disuse-induced atrophy in aged rats possibly through of the LRP130/PGC-1α complex by inhibiting the ubiquitin–proteasome system.
Issue Date: 
2015
Citation: 
The Journals of Gerontology: Biological Sciences, v. 71, n. 5, p. 601-609, 2015.
Time Duration: 
601-609
Keywords: 
  • Aging
  • Muscle mass
  • Immobilization
  • Recovery
  • Exercise training
Source: 
http://dx.doi.org/10.1093/gerona/glv064
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/141046
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.