Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/21755
- Title:
- Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials
- Universidade Estadual Paulista (UNESP)
- Universidade Estadual de Campinas (UNICAMP)
- 0168-9274
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- CAPES: DGU 160/08
- FAPESP: 03/01874-2
- FAPESP: 07/02854-6
- CNPq: 304830/2006-2
- Consider the inner product< p, q > = Gamma(alpha + beta + 2)/2(alpha+beta+1) Gamma (alpha + 1)Gamma(beta +1) integral(t)(-t) p(x)q(x)(alpha) (1 + x)(beta) dx+ Mp(1)q(1)+ Np'(1)q'(1) + 1 (M) over tildep(-1)q(-1)+ (N) over tildep'(-1)q'(-1)where alpha, beta > -1 and M,N,(M) over tilde,(N) over tilde >= 0. If mu = (M,N,(M) over tilde,(N) over tilde), we denote by x(n,k)(mu)(alpha,beta), k =1,...n, the zeros of the n-th polynomial P(n)((alpha,beta,mu)) (x), orthogonal with respect to the above inner product. We investigate the location, interlacing properties, asymptotics and monotonicity of x(n,k)(mu)(alpha,beta) with respect to the parameters M, N,(M) over tilde,(N) over tilde in two important cases, when either i = N = 0 or N = 0. The results are obtained through careful analysis of the behavior and the asymptotics of the zeros of polynomials of the form p,,(x)= hn(x) + cgn(x) as functions of(C) 2010 IMACS. Published by Elsevier BA/. All rights reserved.
- 1-Mar-2010
- Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 60, n. 3, p. 263-276, 2010.
- 263-276
- Elsevier B.V.
- Jacobi orthogonal polynomials
- Jacobi-Sobolev type orthogonal polynomials
- Zeros
- Monotonicity
- Asymptotic
- http://dx.doi.org/10.1016/j.apnum.2009.12.004
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/21755
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.