You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21778
Title: 
Convolutions and zeros of orthogonal polynomials
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Univ Vigo
ISSN: 
0168-9274
Sponsorship: 
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • MCT of Spain
  • European Community
Sponsorship Process Number: 
  • CAPES: 160/08 and PHB2007-0078
  • CNPq: 305622/2009-9
  • FAPESP: 09/13832-9
  • MCT of Spain: MTM2006-07186
  • MCT of Spain: MTM2009-14668-C02-01
Abstract: 
In an attempt to answer a long standing open question of Al-Salam we generate various beautiful formulae for convolutions of orthogonal polynomials similar toU(n)(x) = Sigma(n)(k=0) P(k)(x)P(n-k)(x).where U(n)(x) are the Chebyshev polynomials of the second kind and P(k)(x) are the Legendre polynomials. The results are derived both via the generating functions approach and a new convolution formulae for hypergeometric functions. We apply some addition formulae similar to the well-known expansionH(n)(x + Y) = 2(-n/2) Sigma(n)(k=0) (n k) H(k)(root 2x) H(n-k)(root 2y)for the Hermite polynomials, due to Appell and Kampe de Feriet, to obtain new interesting inequalities about the zeros of the corresponding orthogonal polynomials. (C) 2011 IMACS. Published by Elsevier B.V. All rights reserved.
Issue Date: 
1-Jul-2011
Citation: 
Applied Numerical Mathematics. Amsterdam: Elsevier B.V., v. 61, n. 7, p. 868-878, 2011.
Time Duration: 
868-878
Publisher: 
Elsevier B.V.
Keywords: 
  • Orthogonal polynomials
  • Convolution
  • Generating function
  • Zeros
Source: 
http://dx.doi.org/10.1016/j.apnum.2011.02.004
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/21778
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.