Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/21779
- Title:
- Distances between critical points and midpoints of zeros of hyperbolic polynomials
- Universidade Estadual Paulista (UNESP)
- Univ Nice
- 0007-4497
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Centre national de la recherche scientifique (CNRS)
- FAPESP: 03/01874-2
- CNPq: 304830/2006-2
- French Foundation CNRS: 20682
- Let p(x) be a polynomial of degree n with only real zeros x(1) <= x(2) <= ... <= x(n). Consider their midpoints z(k) = (x(k) + x(k+1))/2 and the zeros xi(1) <= xi(2) <= ... <= xi(n-1) of p'(z). Motivated by a question posed by D. Farmer and R. Rhoades, we compare the smallest and largest distances between consecutive xi(k) to the ones between consecutive z(k). The corresponding problem for zeros and critical points of entire functions of order one from the Laguerre-Polya class is also discussed. (C) 2007 Published by Elsevier Masson SAS.
- 1-Mar-2010
- Bulletin Des Sciences Mathematiques. Paris: Gauthier-villars/editions Elsevier, v. 134, n. 2, p. 196-206, 2010.
- 196-206
- Gauthier-villars/editions Elsevier
- Hyperbolic polynomial
- Strictly hyperbolic polynomial
- Zero
- Midpoint
- Critical point
- Entire function
- Laguerre-Polya class
- http://dx.doi.org/10.1016/j.bulsci.2007.11.006
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/21779
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.