You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21779
Title: 
Distances between critical points and midpoints of zeros of hyperbolic polynomials
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Univ Nice
ISSN: 
0007-4497
Sponsorship: 
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Centre national de la recherche scientifique (CNRS)
Sponsorship Process Number: 
  • FAPESP: 03/01874-2
  • CNPq: 304830/2006-2
  • French Foundation CNRS: 20682
Abstract: 
Let p(x) be a polynomial of degree n with only real zeros x(1) <= x(2) <= ... <= x(n). Consider their midpoints z(k) = (x(k) + x(k+1))/2 and the zeros xi(1) <= xi(2) <= ... <= xi(n-1) of p'(z). Motivated by a question posed by D. Farmer and R. Rhoades, we compare the smallest and largest distances between consecutive xi(k) to the ones between consecutive z(k). The corresponding problem for zeros and critical points of entire functions of order one from the Laguerre-Polya class is also discussed. (C) 2007 Published by Elsevier Masson SAS.
Issue Date: 
1-Mar-2010
Citation: 
Bulletin Des Sciences Mathematiques. Paris: Gauthier-villars/editions Elsevier, v. 134, n. 2, p. 196-206, 2010.
Time Duration: 
196-206
Publisher: 
Gauthier-villars/editions Elsevier
Keywords: 
  • Hyperbolic polynomial
  • Strictly hyperbolic polynomial
  • Zero
  • Midpoint
  • Critical point
  • Entire function
  • Laguerre-Polya class
Source: 
http://dx.doi.org/10.1016/j.bulsci.2007.11.006
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/21779
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.