You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/21816
Title: 
Asymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures
Author(s): 
Institution: 
  • Univ Almeria
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0021-9045
Sponsorship: 
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • MICINN of Spain
  • Junta de Andalucia
Sponsorship Process Number: 
  • MICINN of Spain: MTM2008-06689-C02-01
  • Junta de Andalucia: FQM229
  • Junta de Andalucia: P06-FQM-1735
Abstract: 
We consider the Sobolev inner product< f, g > = integral(1)(-1)f(x)g(x)d psi((alpha,beta))(x) + integral f'(x)g'(x)d psi(x),where d psi((alpha,beta))(x) = (1 = x)(alpha)(1 + x)(beta)dx with alpha, beta > -1, and psi is a measure involving a rational modification of a Jacobi weight and with a mass point outside the interval (-1, 1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product on different regions of the complex plane. In fact, we obtain the outer and inner strong asymptotics for these polynomials as well as the Mehler-Heine asymptotics which allow us to obtain the asymptotics of the largest zeros of these polynomials. We also show that in a certain sense the above inner product is also equilibrated. (C) 2010 Elsevier B.V. All rights reserved.
Issue Date: 
1-Nov-2010
Citation: 
Journal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 162, n. 11, p. 1945-1963, 2010.
Time Duration: 
1945-1963
Publisher: 
Academic Press Inc. Elsevier B.V.
Keywords: 
  • Orthogonal polynomials
  • Sobolev orthogonal polynomials
  • Asymptotic
Source: 
http://dx.doi.org/10.1016/j.jat.2010.05.003
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/21816
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.