Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/21816
- Title:
- Asymptotics for Jacobi-Sobolev orthogonal polynomials associated with non-coherent pairs of measures
- Univ Almeria
- Universidade Estadual Paulista (UNESP)
- 0021-9045
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- MICINN of Spain
- Junta de Andalucia
- MICINN of Spain: MTM2008-06689-C02-01
- Junta de Andalucia: FQM229
- Junta de Andalucia: P06-FQM-1735
- We consider the Sobolev inner product< f, g > = integral(1)(-1)f(x)g(x)d psi((alpha,beta))(x) + integral f'(x)g'(x)d psi(x),where d psi((alpha,beta))(x) = (1 = x)(alpha)(1 + x)(beta)dx with alpha, beta > -1, and psi is a measure involving a rational modification of a Jacobi weight and with a mass point outside the interval (-1, 1). We study the asymptotic behaviour of the polynomials which are orthogonal with respect to this inner product on different regions of the complex plane. In fact, we obtain the outer and inner strong asymptotics for these polynomials as well as the Mehler-Heine asymptotics which allow us to obtain the asymptotics of the largest zeros of these polynomials. We also show that in a certain sense the above inner product is also equilibrated. (C) 2010 Elsevier B.V. All rights reserved.
- 1-Nov-2010
- Journal of Approximation Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 162, n. 11, p. 1945-1963, 2010.
- 1945-1963
- Academic Press Inc. Elsevier B.V.
- Orthogonal polynomials
- Sobolev orthogonal polynomials
- Asymptotic
- http://dx.doi.org/10.1016/j.jat.2010.05.003
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/21816
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.