You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22150
Title: 
Dynamics at infinity and other global dynamical aspects of Shimizu-Morioka equations
Author(s): 
Institution: 
Universidade Estadual Paulista (UNESP)
ISSN: 
0924-090X
Sponsorship: 
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  • Pró-Reitoria de Pesquisa da UNESP (PROPe UNESP)
Sponsorship Process Number: 
CNPq: 305204/2009-2
Abstract: 
We present some global dynamical aspects of Shimizu-Morioka equations given by(x)Over dot = y, (y)Over dot = x - lambda y - xz, (z)Over dot = -alpha z + x(2),where (x,y,z)aae(3) are the state variables and lambda,alpha are real parameters. This system is a simplified model proposed for studying the dynamics of the well-known Lorenz system for large Rayleigh numbers. Using the Poincar, compactification of a polynomial vector field in ae(3), we give a complete description of the dynamics of Shimizu-Morioka equations at infinity. Then using analytical and numerical tools, we investigate for the case alpha=0 the existence of infinitely many singularly degenerate heteroclinic cycles, each one consisting of an invariant set formed by a line of equilibria together with a heteroclinic orbit connecting two of these equilibria. The dynamical consequences of the existence of these cycles are also investigated. The present study is part of an effort aiming to describe global properties of quadratic three-dimensional vector fields with chaotic dynamical behavior, as made for instance in (Dias et al. in Nonlinear Anal. Real World Appl. 11(5):3491-3500, 2010; Kokubu and Roussarie in J. Dyn. Differ. Equ. 16(2):513-557, 2004; Llibre and Messias in Physica D 238(3):241-252, 2009; Llibre et al. in J. Phys. A, Math. Theor. 41:275210, 2008; Llibre et al. in Int. J. Bifurc. Chaos Appl. Sci. Eng. 20(10):3137-3155, 2010; Lorenz in J. Atmos. Sci. 20:130-141, 1963; Lu et al. in Int. J. Bifurc. Chaos Appl. Sci. Eng. 14(5):1507-1537, 2004; Mello et al. in Chaos Solitons Fractals 37:1244-1255, 2008; Messias in J. Phys. A, Math. Theor. 42:115101, 2009; Messias et al. in TEMA Tend. Mat. Apl. Comput. 9(2):275-285, 2008).
Issue Date: 
1-Jul-2012
Citation: 
Nonlinear Dynamics. Dordrecht: Springer, v. 69, n. 1-2, p. 577-587, 2012.
Time Duration: 
577-587
Publisher: 
Springer
Keywords: 
  • Shimizu-Morioka equations
  • Poincare compactification
  • Dynamics at infinity
  • Singularly degenerate heteroclinic cycles
  • Chaotic dynamics
Source: 
http://dx.doi.org/10.1007/s11071-011-0288-8
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/22150
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.