You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22160
Title: 
Ergodic properties of triangle partitions
Author(s): 
Institution: 
  • Salzburg Univ
  • Universidade Estadual Paulista (UNESP)
  • Inst Math Luminy
ISSN: 
0026-9255
Sponsorship: 
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação para o Desenvolvimento da UNESP (FUNDUNESP)
Sponsorship Process Number: 
  • CNPq: 481406/2004-2
  • CNPq: 302298/2003-7
  • FUNDUNESP: 00592/06-DF
Abstract: 
We study the ergodic properties of a map called the Triangle Sequence. We prove that the algorithm is weakly convergent almost surely, and ergodic. As far as we know, it is the first example of a 2-dimensional algorithm where a surprising diophantine phenomenon happens: there are sequences of nested cells whose intersection is a segment, although no vertex is fixed. Examples of n-dimensional algorithms presenting this behavior were known for n >= 3.
Issue Date: 
1-Jul-2009
Citation: 
Monatshefte Fur Mathematik. Wien: Springer Wien, v. 157, n. 3, p. 283-299, 2009.
Time Duration: 
283-299
Publisher: 
Springer Wien
Keywords: 
  • Ergodic theory
  • Invariant measures
Source: 
http://dx.doi.org/10.1007/s00605-008-0065-z
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/22160
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.