Please use this identifier to cite or link to this item:
        
        
        
        http://acervodigital.unesp.br/handle/11449/22160- Title:
 - Ergodic properties of triangle partitions
 - Salzburg Univ
 - Universidade Estadual Paulista (UNESP)
 - Inst Math Luminy
 
- 0026-9255
 - Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
 - Fundação para o Desenvolvimento da UNESP (FUNDUNESP)
 
- CNPq: 481406/2004-2
 - CNPq: 302298/2003-7
 - FUNDUNESP: 00592/06-DF
 
- We study the ergodic properties of a map called the Triangle Sequence. We prove that the algorithm is weakly convergent almost surely, and ergodic. As far as we know, it is the first example of a 2-dimensional algorithm where a surprising diophantine phenomenon happens: there are sequences of nested cells whose intersection is a segment, although no vertex is fixed. Examples of n-dimensional algorithms presenting this behavior were known for n >= 3.
 - 1-Jul-2009
 - Monatshefte Fur Mathematik. Wien: Springer Wien, v. 157, n. 3, p. 283-299, 2009.
 - 283-299
 - Springer Wien
 - Ergodic theory
 - Invariant measures
 
- http://dx.doi.org/10.1007/s00605-008-0065-z
 - Acesso restrito
 - outro
 - http://repositorio.unesp.br/handle/11449/22160
 
There are no files associated with this item.
    
 
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
