Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/22160
- Title:
- Ergodic properties of triangle partitions
- Salzburg Univ
- Universidade Estadual Paulista (UNESP)
- Inst Math Luminy
- 0026-9255
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Fundação para o Desenvolvimento da UNESP (FUNDUNESP)
- CNPq: 481406/2004-2
- CNPq: 302298/2003-7
- FUNDUNESP: 00592/06-DF
- We study the ergodic properties of a map called the Triangle Sequence. We prove that the algorithm is weakly convergent almost surely, and ergodic. As far as we know, it is the first example of a 2-dimensional algorithm where a surprising diophantine phenomenon happens: there are sequences of nested cells whose intersection is a segment, although no vertex is fixed. Examples of n-dimensional algorithms presenting this behavior were known for n >= 3.
- 1-Jul-2009
- Monatshefte Fur Mathematik. Wien: Springer Wien, v. 157, n. 3, p. 283-299, 2009.
- 283-299
- Springer Wien
- Ergodic theory
- Invariant measures
- http://dx.doi.org/10.1007/s00605-008-0065-z
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/22160
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.