You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/22166
Title: 
GLOBAL DYNAMICS IN THE POINCARE BALL of THE CHEN SYSTEM HAVING INVARIANT ALGEBRAIC SURFACES
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Univ Autonoma Barcelona
ISSN: 
0218-1274
Sponsorship: 
  • MICINN/FEDER
  • Generalitat de Catalunya
  • ICREA Academia
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sponsorship Process Number: 
  • MICINN/FEDER: MTM2008-03437
  • Generalitat de Catalunya: 2009SGR-410
  • CNPq: 305204/2009-2
  • PHB-2009-0025
Abstract: 
In this paper, we perform a global analysis of the dynamics of the Chen system(x) over dot = a(y - x), (y) over dot = (c - a)x - xz + cy, (z) over dot = xy - bz,where (x, y, z) is an element of R-3 and (a, b, c) is an element of R-3. We give the complete description of its dynamics on the sphere at infinity. For six sets of the parameter values, the system has invariant algebraic surfaces. In these cases, we provide the global phase portrait of the Chen system and give a complete description of the alpha- and omega-limit sets of its orbits in the Poincare ball, including its boundary S-2, i.e. in the compactification of R-3 with the sphere S-2 of infinity. Moreover, combining the analytical results obtained with an accurate numerical analysis, we prove the existence of a family with infinitely many heteroclinic orbits contained on invariant cylinders when the Chen system has a line of singularities and a first integral, which indicates the complicated dynamical behavior of the Chen system solutions even in the absence of chaotic dynamics.
Issue Date: 
1-Jun-2012
Citation: 
International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 22, n. 6, p. 17, 2012.
Time Duration: 
17
Publisher: 
World Scientific Publ Co Pte Ltd
Keywords: 
  • Chen system
  • integrability
  • Poincare compactification
  • dynamics at infinity
  • heteroclinic orbits
  • singularly degenerate heteroclinic cycles
  • invariant manifolds
Source: 
http://dx.doi.org/10.1142/S0218127412501544
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/22166
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.