Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/23015
- Title:
- On asymptotic solutions of integrable wave equations
- Russian Acad Sci
- Universidade Estadual Paulista (UNESP)
- Uzbek Acad Sci
- 0375-9601
- Asymptotic 'soliton train' solutions of integrable wave equations described by inverse scattering transform method with second-order scalar eigenvalue problem are considered. It is shown that if asymptotic solution can be presented as a modulated one-phase nonlinear periodic wavetrain, then the corresponding Baker-Akhiezer function transforms into quasiclassical eigenfunction of the linear spectral problem in weak dispersion limit for initially smooth pulses. In this quasiclassical limit the corresponding eigenvalues can be calculated with the use of the Bohr Sommerfeld quantization rule. The asymptotic distributions of solitons parameters obtained in this way specify the solution of the Whitham equations. (C) 2001 Elsevier B.V. B.V. All rights reserved.
- 27-Aug-2001
- Physics Letters A. Amsterdam: Elsevier B.V., v. 287, n. 3-4, p. 223-232, 2001.
- 223-232
- Elsevier B.V.
- http://dx.doi.org/10.1016/S0375-9601(01)00478-9
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/23015
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.