Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/23359
- Title:
- Negative dimensional approach for scalar two-loop three-point and three-loop two-point integrals
- Universidade Estadual Paulista (UNESP)
- 0008-4204
- The well-known D-dimensional Feynman integrals were shown, by Halliday and Ricotta, to be capable of undergoing analytic continuation into the domain of negative values for the dimension of space-time. Furthermore, this could be identified with Grassmannian integration in positive dimensions. From this possibility follows the concept of negative-dimensional integration for loop integrals in field theories. Using this technique, we evaluate three two-loop three-point scalar integrals, with five and six massless propagators, with specific external kinematic configurations (two legs on-shell), and four three-loop two-point scalar integrals. These results are given for arbitrary exponents of propagators and dimension, in Euclidean space, and the particular cases compared to results published in the literature.
- 1-Aug-2000
- Canadian Journal of Physics. Ottawa: Natl Research Council Canada, v. 78, n. 8, p. 769-777, 2000.
- 769-777
- Natl Research Council Canada
- http://dx.doi.org/10.1139/cjp-78-8-769
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/23359
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.