Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/24225
- Title:
- Generalized squeezing operators, bipartite Wigner functions and entanglement via Wehrl's entropy functionals
- Universidade Estadual Paulista (UNESP)
- 0031-8949
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- We introduce a new class of unitary transformations based on the su(1, 1) Lie algebra that generalizes, for certain particular representations of its generators, well-known squeezing transformations in quantum optics. To illustrate our results, we focus on the two-mode bosonic representation and show how the parametric amplifier model can be modified in order to generate such a generalized squeezing operator. Furthermore, we obtain a general expression for the bipartite Wigner function which allows us to identify two distinct sources of entanglement, here labelled dynamical and kinematical entanglement. We also establish a quantitative estimate of entanglement for bipartite systems through some basic definitions of entropy functionals in continuous phase-space representations.
- 1-Oct-2008
- Physica Scripta. Bristol: Iop Publishing Ltd, v. 78, n. 4, p. 9, 2008.
- 9
- Iop Publishing Ltd
- http://dx.doi.org/10.1088/0031-8949/78/04/045007
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/24225
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.