You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/24956
Title: 
Parameter space for a dissipative Fermi-Ulam model
Author(s): 
Institution: 
  • Max Planck Inst Phys Komplexer Syst
  • Univ Maribor
  • Universidade Estadual Paulista (UNESP)
ISSN: 
1367-2630
Sponsorship: 
  • Max-Planck-Institut fur Physik Komplexer Systeme
  • Ad futura Foundation
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação para o Desenvolvimento da UNESP (FUNDUNESP)
  • Center for Scientific Computing (NCC/GridUNESP) of the São Paulo State University (UNESP)
Abstract: 
The parameter space for a dissipative bouncing ball model under the effect of inelastic collisions is studied. The system is described using a two-dimensional nonlinear area-contracting map. The introduction of dissipation destroys the mixed structure of phase space of the non-dissipative case, leading to the existence of a chaotic attractor and attracting fixed points, which may coexist for certain ranges of control parameters. We have computed the average velocity for the parameter space and made a connection with the parameter space based on the maximum Lyapunov exponent. For both cases, we found an infinite family of self-similar structures of shrimp shape, which correspond to the periodic attractors embedded in a large region that corresponds to the chaotic motion.
Issue Date: 
8-Dec-2011
Citation: 
New Journal of Physics. Bristol: Iop Publishing Ltd, v. 13, p. 13, 2011.
Time Duration: 
13
Publisher: 
Iop Publishing Ltd
Source: 
http://dx.doi.org/10.1088/1367-2630/13/12/123012
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/24956
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.