You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/25107
Title: 
Uniform exponential dichotomy and continuity of attractors for singularly perturbed damped wave equations
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Universidade de São Paulo (USP)
  • Silesian Univ
ISSN: 
1040-7294
Abstract: 
For eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+).
Issue Date: 
1-Jul-2006
Citation: 
Journal of Dynamics and Differential Equations. New York: Springer, v. 18, n. 3, p. 767-814, 2006.
Time Duration: 
767-814
Publisher: 
Springer
Keywords: 
  • damped wave equation
  • strongly damped wave equation
  • dissipative semigroup
  • global attractor
  • uniform exponential dichotomy
  • upper
  • semicontinuity
  • lower semicontinuity
Source: 
http://dx.doi.org/10.1007/s10884-006-9023-4
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/25107
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.