You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/32265
Title: 
Path formulation for Z(2) circle plus Z(2)-equivariant bifurcation problems
Author(s): 
Institution: 
Universidade Estadual Paulista (UNESP)
Abstract: 
M. Manoel and I. Stewart 0101) classify Z(2) circle plus Z(2)-equivariant bifurcation problems up to codimension 3 and 1 modal parameter, using the classical techniques of singularity theory of Golubistky and Schaeffer [8]. In this paper we classify these same problems using an alternative form: the path formulation (Theorem 6.1). One of the advantages of this method is that the calculates to obtain the normal forms are easier. Furthermore, in our classification we observe the presence of only one modal parameter in the generic core. It differs from the classical classification where the core has 2 modal parameters. We finish this work comparing our classification to the one obtained in [10].
Issue Date: 
1-Jan-2007
Citation: 
Real and Complex Singularities. Cambridge: Birkhauser Boston, p. 127-141, 2007.
Time Duration: 
127-141
Publisher: 
Birkhauser Boston
Keywords: 
  • path formulation
  • equivariant bifurcation problems
  • Z(2) circle plus Z(2)-symmetry
  • classification
Source: 
http://dx.doi.org/10.1007/978-3-7643-7776-2_10
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/32265
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.