You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/32922
Title: 
Patterns in parabolic problems with nonlinear boundary conditions
Author(s): 
Institution: 
  • Universidade de São Paulo (USP)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0022-247X
Sponsorship: 
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Sponsorship Process Number: 
  • CNPq: 305447/2005-0
  • FAPESP: 2003/10042-0
  • FAPESP: 2000/01479-8
Abstract: 
We obtain existence of asymptotically stable nonconstant equilibrium solutions for semilinear parabolic equations with nonlinear boundary conditions on small domains connected by thin channels. We prove the convergence of eigenvalues and eigenfunctions of the Laplace operator in such domains. This information is used to show that the asymptotic dynamics of the heat equation in this domain is equivalent to the asymptotic dynamics of a system of two ordinary differential equations diffusively (weakly) coupled. The main tools employed are the invariant manifold theory and a uniform trace theorem. (c) 2006 Elsevier B.V. All rights reserved.
Issue Date: 
15-Jan-2007
Citation: 
Journal of Mathematical Analysis and Applications. San Diego: Academic Press Inc. Elsevier B.V., v. 325, n. 2, p. 1216-1239, 2007.
Time Duration: 
1216-1239
Publisher: 
Elsevier B.V.
Keywords: 
  • Semilinear parabolic problems
  • Nonlinear boundary conditions
  • Dumbbell domains
  • Stable nonconstant equilibria
  • Invariant manifolds
Source: 
http://dx.doi.org/10.1016/j.jmaa.2006.02.046
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/32922
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.