Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/34247
- Title:
- Discrete approximations for strict convex continuous time problems and duality
- Universidade Estadual de Campinas (UNICAMP)
- Universidade Estadual Paulista (UNESP)
- 0101-8205
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory.
- 1-Jan-2004
- Computational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004.
- 81-105
- Soc Brasileira Matematica Aplicada & Computacional
- Linear Quadratic problems
- Continuous time optimization
- discrete approximation
- strict convexity
- http://www.scielo.br/scielo.php?pid=S1807-03022004000100005&script=sci_arttext
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/34247
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.