You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/34247
Title: 
Discrete approximations for strict convex continuous time problems and duality
Author(s): 
Institution: 
  • Universidade Estadual de Campinas (UNICAMP)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0101-8205
Sponsorship: 
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Abstract: 
We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory.
Issue Date: 
1-Jan-2004
Citation: 
Computational & Applied Mathematics. Sao Carlos Sp: Soc Brasileira Matematica Aplicada & Computacional, v. 23, n. 1, p. 81-105, 2004.
Time Duration: 
81-105
Publisher: 
Soc Brasileira Matematica Aplicada & Computacional
Keywords: 
  • Linear Quadratic problems
  • Continuous time optimization
  • discrete approximation
  • strict convexity
Source: 
http://www.scielo.br/scielo.php?pid=S1807-03022004000100005&script=sci_arttext
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/34247
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.