You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/35036
Title: 
Neural networks in chemosystematic studies of asteraceae: A classification based on a dichotomic approach
Author(s): 
Institution: 
  • Universidade de São Paulo (USP)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
1612-1872
Abstract: 
This paper describes the application of artificial neural nets as an alternative and efficient method for the classification of botanical taxa based on chemical data (chemosystematics). A total of 28,000 botanical occurrences of chemical compounds isolated from the Asteraceae family were chosen from the literature, and grouped by chemical class for each species. Four tests were carried out to differentiate and classify different botanical taxa. The qualifying capacity of the artificial neural nets was dichotomically tested at different hierarchical levels of the family, such as subfamilies and groups of Heliantheae subtribes. Furthermore, two specific subtribes of the Heliantheae and two genera of one of these subtribes were also tested. In general, the artificial neural net gave rise to good results, with multiple-correlation values R > 0.90. Hence, it was possible to differentiate the dichotomic character of the botanical taxa studied.
Issue Date: 
1-Jan-2005
Citation: 
Chemistry & Biodiversity. Zurich: Verlag Helvetica Chimica Acta Ag, v. 2, n. 5, p. 633-644, 2005.
Time Duration: 
633-644
Publisher: 
Verlag Helvetica Chimica Acta Ag
Source: 
http://dx.doi.org/10.1002/cbdv.200590040
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/35036
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.