You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/35981
Title: 
On computing discriminants of subfields of Q(zeta(pr))
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Universidade Federal do Ceará (UFC)
ISSN: 
0022-314X
Abstract: 
The conductor-discriminant formula, namely, the Hasse Theorem, states that if a number field K is fixed by a subgroup H of Gal(Q(zeta(n))/Q), the discriminant of K can be obtained from H by computing the product of the conductors of all characters defined modulo n which are associated to K. By calculating these conductors explicitly, we derive a formula to compute the discriminant of any subfield of Q(zeta(p)r), where p is an odd prime and r is a positive integer. (C) 2002 Elsevier B.V. (USA).
Issue Date: 
1-Oct-2002
Citation: 
Journal of Number Theory. San Diego: Academic Press Inc. Elsevier B.V., v. 96, n. 2, p. 319-325, 2002.
Time Duration: 
319-325
Publisher: 
Elsevier B.V.
Keywords: 
  • characters
  • conductors
  • Cyclotomic fields
  • discriminants of number fields
  • Hasse Theorem
Source: 
http://dx.doi.org/10.1006/jnth.2002.2796
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/35981
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.