You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/38307
Title: 
Synthetic and natural polycations for gene therapy: State of the art and new perspectives
Author(s): 
Institution: 
  • Univ Montreal
  • Universidade Estadual Paulista (UNESP)
ISSN: 
1566-5232
Abstract: 
Currently, the major drawback of gene therapy is the gene transfection rate. The two main types of vectors that. are used in gene therapy are based on viral or non-viral gene delivery systems. There are several non-viral systems that can be used to transfer foreign genetic material into the human body. In order to do so, the DNA to be transferred must escape the processes that affect the disposition of macromolecules. These processes include the interaction with blood components, vascular endothelial cells and uptake by the reticuloendothelial system. Furthermore, the degradation of therapeutic DNA by serum nucleases is also a potential obstacle for functional delivery to the target cell. Cationic polymers have a great potential for DNA complexation and may be useful as non-viral vectors for gene therapy applications. The objective of this review was to address the state of the art in gene therapy using synthetic and natural polycations and the latest strategies to improve the efficiency of gene transfer into the cell.
Issue Date: 
1-Feb-2006
Citation: 
Current Gene Therapy. Sharjah: Bentham Science Publ Ltd, v. 6, n. 1, p. 59-71, 2006.
Time Duration: 
59-71
Publisher: 
Bentham Science Publ Ltd
Keywords: 
  • polymers
  • nanoparticles
  • gene therapy
  • DNA
  • polycations
Source: 
http://dx.doi.org/10.2174/156652306775515510
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/38307
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.