You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/40908
Title: 
Bifurcation of limit cycles from a centre in R-4 in resonance 1:N
Author(s): 
Institution: 
  • Univ Autonoma Barcelona
  • Universidade Estadual Paulista (UNESP)
  • Universidade Federal de Goiás (UFG)
ISSN: 
1468-9367
Sponsorship: 
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • MEC/FEPER MTM
  • CIRIT
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sponsorship Process Number: 
  • FAPESP: 07/04307-2
  • MEC/FEPER MTM: 2005-06098-C02-01
  • CIRIT: 2005SGR 00550
  • CAPES: 071/04
  • CAPES: HBP2003-0017
Abstract: 
For every positive integer N >= 2 we consider the linear differential centre (x) over dot = Ax in R-4 with eigenvalues +/- i and +/- Ni. We perturb this linear centre inside the class of all polynomial differential systems of the form linear plus a homogeneous nonlinearity of degree N, i.e. (x) over dot Ax + epsilon F(x) where every component of F(x) is a linear polynomial plus a homogeneous polynomial of degree N. Then if the displacement function of order epsilon of the perturbed system is not identically zero, we study the maximal number of limit cycles that can bifurcate from the periodic orbits of the linear differential centre.
Issue Date: 
1-Jan-2009
Citation: 
Dynamical Systems-an International Journal. Abingdon: Taylor & Francis Ltd, v. 24, n. 1, p. 123-137, 2009.
Time Duration: 
123-137
Publisher: 
Taylor & Francis Ltd
Keywords: 
  • periodic orbits
  • limit cycles
  • polynomial vector fields
  • perturbation
  • resonance 1:N
Source: 
http://dx.doi.org/10.1080/14689360802534492
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/40908
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.