Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/40908
- Title:
- Bifurcation of limit cycles from a centre in R-4 in resonance 1:N
- Univ Autonoma Barcelona
- Universidade Estadual Paulista (UNESP)
- Universidade Federal de Goiás (UFG)
- 1468-9367
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- MEC/FEPER MTM
- CIRIT
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- FAPESP: 07/04307-2
- MEC/FEPER MTM: 2005-06098-C02-01
- CIRIT: 2005SGR 00550
- CAPES: 071/04
- CAPES: HBP2003-0017
- For every positive integer N >= 2 we consider the linear differential centre (x) over dot = Ax in R-4 with eigenvalues +/- i and +/- Ni. We perturb this linear centre inside the class of all polynomial differential systems of the form linear plus a homogeneous nonlinearity of degree N, i.e. (x) over dot Ax + epsilon F(x) where every component of F(x) is a linear polynomial plus a homogeneous polynomial of degree N. Then if the displacement function of order epsilon of the perturbed system is not identically zero, we study the maximal number of limit cycles that can bifurcate from the periodic orbits of the linear differential centre.
- 1-Jan-2009
- Dynamical Systems-an International Journal. Abingdon: Taylor & Francis Ltd, v. 24, n. 1, p. 123-137, 2009.
- 123-137
- Taylor & Francis Ltd
- periodic orbits
- limit cycles
- polynomial vector fields
- perturbation
- resonance 1:N
- http://dx.doi.org/10.1080/14689360802534492
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/40908
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.