You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/42245
Title: 
Ligand Exchange Inducing Efficient Incorporation of CisPt Derivatives into Ureasil-PPO Hybrid and Their Interactions with the Multifunctional Hybrid Network
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Synchrotron SOLEIL LOrme Merisiers
ISSN: 
1520-6106
Sponsorship: 
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • French COFECUB agency
  • SOLEIL (France)
  • Laboratório Nacional de Luz Síncrotron (LNLS)
Sponsorship Process Number: 
French COFECUB agency: Ph 564/07
Abstract: 
Efficient incorporation of (PtCl3EtOH)(-) anion derived from CisPt moiety into ureasil-PPO (poly(propylene oxide)) network was achieved from one-pot sol-gel synthesis carried out in the presence of water, HCl, and ethanol. Reactant proportion was adequately chosen to lead the sol-gel formation of siloxane nodes at the end of short PPO chains, to prevent the CisPt hydrolysis, and to induce platinum ligand exchange. The efficient dissolution of Pt species and the formation of a homogeneous liquid like solution on the transparent and elastomeric ureasil-PPO hybrid were evidenced by differential scanning calorimetry and small-angle X-ray scattering. The CisPt ligand exchange and the formation of a Zeise-type salt Y+(PtCl3R)(-) were demonstrated by Raman spectroscopy and Pt L-3-edge EXAFS analysis. In light of these results and in agreement with the proportion of reactants introduced in the media for synthesis and those self produced by hydrolysis and condensation processes, we proposed for R the ethanol moiety and for Y the ammonium cation. The Raman spectroscopy studies indicated also that the ammonium cations are coordinated by the ether type oxygen atoms of the PPO chains backbone, whereas the amine groups of the urea linkage participate in the (PtCl3EtOH)(-) anion coordination. In situ Raman monitoring of Pt species decomplexation induced by immersion of hybrid matrix in water highlighted the specific participation of Pt ligands in interaction with the urea group and of NH4+ cations coordinated by ether type oxygen atoms in the formation of supramolecular interactions between the PPO chains. The electrospray mass spectrometry analysis of the Pt species released in water from the ureasil-PPO hybrid evidenced that the structure of the complex, NH4 (PtCl3 EtOH), incorporated in the matrix is totally preserved after delivery. Due to both well-known antitumoral and catalytic activities of Pt species, the results reported herein are of prime importance for further applications as drug delivery systems with optimized release pattern or as potential materials for new conceptual development of in situ catalyst delivery in homogeneous catalysis.
Issue Date: 
12-Jul-2012
Citation: 
Journal of Physical Chemistry B. Washington: Amer Chemical Soc, v. 116, n. 27, p. 7931-7939, 2012.
Time Duration: 
7931-7939
Publisher: 
Amer Chemical Soc
Source: 
http://dx.doi.org/10.1021/jp302606b
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/42245
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.