You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/42471
Title: 
Spin-orbit coupling for tidally evolving super-Earths
Author(s): 
Institution: 
  • Universidade de São Paulo (USP)
  • Universidade Estadual Paulista (UNESP)
  • German Aerosp Ctr DLR
ISSN: 
0035-8711
Sponsorship: 
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Computation Centre of the University of São Paulo (LCCA-USP)
Sponsorship Process Number: 
  • FAPESP: 09/16900-5
  • FAPESP: 06/58000-2
Abstract: 
We investigate the spin behaviour of close-in rocky planets and the implications for their orbital evolution. Considering that the planet rotation evolves under simultaneous actions of the torque due to the equatorial deformation and the tidal torque, both raised by the central star, we analyse the possibility of temporary captures in spinorbit resonances. The results of the numerical simulations of the exact equations of motions indicate that, whenever the planet rotation is trapped in a resonant motion, the orbital decay and the eccentricity damping are faster than the ones in which the rotation follows the so-called pseudo-synchronization. Analytical results obtained through the averaged equations of the spinorbit problem show a good agreement with the numerical simulations. We apply the analysis to the cases of the recently discovered hot super-Earths Kepler-10?b, GJ 3634?b and 55 Cnc?e. The simulated dynamical history of these systems indicates the possibility of capture in several spinorbit resonances; particularly, GJ 3634?b and 55 Cnc?e can currently evolve under a non-synchronous resonant motion for suitable values of the parameters. Moreover, 55 Cnc?e may avoid a chaotic rotation behaviour by evolving towards synchronization through successive temporary resonant trappings.
Issue Date: 
1-Dec-2012
Citation: 
Monthly Notices of The Royal Astronomical Society. Hoboken: Wiley-blackwell, v. 427, n. 3, p. 2239-2250, 2012.
Time Duration: 
2239-2250
Publisher: 
Wiley-Blackwell
Keywords: 
  • celestial mechanics
  • planets and satellites: general
Source: 
http://dx.doi.org/10.1111/j.1365-2966.2012.22084.x
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/42471
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.