Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/42494
- Title:
- Dynamics in dumbbell domains III. Continuity of attractors
- Univ Complutense Madrid
- Universidade de São Paulo (USP)
- Universidade Estadual Paulista (UNESP)
- 0022-0396
- MEC
- Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid
- SIMUMAT-Comunidad de Madrid, Spain
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- MEC: PHB2006-003-PC
- MEC: MTM2006-08262
- Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid: CCG07-UCM/ESP-2393
- Programa de Financiacion de Grupos de Investigacion UCM-Comunidad de Madrid: 920894
- CNPq: 305447/2005-0
- CNPq: 451761/2008-1
- CAPES: 267/2008
- FAPESP: 08/53094-4
- FAPESP: 06/04781-3
- FAPESP: 07/100981-0
- In this paper we conclude the analysis started in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597] and continued in [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz, Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)] concerning the behavior of the asymptotic dynamics of a dissipative reaction-diffusion equation in a dumbbell domain as the channel shrinks to a line segment. In [J.M. Arrieta, AN Carvalho. G. Lozada-Cruz, Dynamics in dumbbell domains I. Continuity of the set of equilibria, J. Differential Equations 231 (2006) 551-597], we have established an appropriate functional analytic framework to address this problem and we have shown the continuity of the set of equilibria. In [J.M. Arrieta, AN Carvalho, G. Lozada-Cruz. Dynamics in dumbbell domains II. The limiting problem, J. Differential Equations 247 (1) (2009) 174-202 (this issue)], we have analyzed the behavior of the limiting problem. In this paper we show that the attractors are Upper semicontinuous and, moreover, if all equilibria of the limiting problem are hyperbolic, then they are lower semicontinuous and therefore, continuous. The continuity is obtained in L(p) and H(1) norms. (C) 2008 Elsevier B.V. All rights reserved.
- 1-Jul-2009
- Journal of Differential Equations. San Diego: Academic Press Inc. Elsevier B.V., v. 247, n. 1, p. 225-259, 2009.
- 225-259
- Academic Press Inc. Elsevier B.V.
- http://dx.doi.org/10.1016/j.jde.2008.12.014
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/42494
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.