Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/5456
- Title:
- Aquatic weed automatic classification using machine learning techniques
- Universidade Estadual Paulista (UNESP)
- 0168-1699
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- FAPESP: 09/16206-1
- FAPESP: 10/12222-0
- FAPESP: 10/11676-7
- FAPESP: 11/14058-5
- FAPESP: 11/14094-1
- CNPq: 303182/2011-3
- Aquatic weed control through chemical products has attracted much attention in the last years, mainly because of the ecological disorder caused by such plants, and also the consequences to the economical activities. However, this kind of control has been carried out in a non-automatic way by technicians, and may be a not healthy policy, since each species may react differently to the same herbicide. Thus, this work proposes the automatic identification of some species by means of supervised pattern recognition techniques and shape descriptors in order to compose a nearby future expert system for automatic application of the correct herbicide. Experiments using some state-of-the-art techniques have shown the robustness of the employed pattern recognition techniques. (c) 2012 Elsevier B.V. All rights reserved.
- 1-Sep-2012
- Computers and Electronics In Agriculture. Oxford: Elsevier B.V., v. 87, p. 56-63, 2012.
- 56-63
- Elsevier B.V.
- Aquatic weed
- Optimum-path forest
- Support vector machines
- Naive Bayes
- Artificial neural networks
- Shape analysis
- http://dx.doi.org/10.1016/j.compag.2012.05.015
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/5456
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.