You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/64980
Title: 
Initial-condition problem for a chiral Gross-Neveu system
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Universidade de São Paulo (USP)
  • Universidade Estadual de Londrina (UEL)
ISSN: 
0556-2821
Abstract: 
A time-dependent projection technique is used to treat the initial-value problem for self-interacting fermionic fields. On the basis of the general dynamics of the fields, we derive formal equations of kinetic-type for the set of one-body dynamical variables. A nonperturbative mean-field expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Gaussian mean-field approximation, for a uniform system described by the chiral Gross-Neveu Hamiltonian. Standard stationary features of the model, such as dynamical mass generation due to chiral symmetry breaking and a phenomenon analogous to dimensional transmutation, are reobtained in this context. The mean-field time evolution of nonequilibrium initial states is discussed.
Issue Date: 
15-Dec-1996
Citation: 
Physical Review D - Particles, Fields, Gravitation and Cosmology, v. 54, n. 12, p. 7867-7878, 1996.
Time Duration: 
7867-7878
Source: 
http://dx.doi.org/10.1103/PhysRevD.54.7867
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/64980
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.