You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/65596
Title: 
Higher order turän inequalities
Author(s): 
Dimitrov, Dimitar K.
Institution: 
Universidade Estadual Paulista (UNESP)
ISSN: 
0002-9939
Abstract: 
The celebrated Turân inequalities P 2 n(x)-P n-x(x)P n+1(x) ≥ 0, x ε[-1,1], n ≥ 1, where P n(x) denotes the Legendre polynomial of degree n, are extended to inequalities for sums of products of four classical orthogonal polynomials. The proof is based on an extension of the inequalities γ 2 n - γ n-1γ n+1 ≥ 0, n ≥ 1, which hold for the Maclaurin coefficients of the real entire function ψ in the Laguerre-Pölya class, ψ(x) = ∑ ∞ n=0 γ nx n / n!. ©1998 American Mathematical Society.
Issue Date: 
1-Dec-1998
Citation: 
Proceedings of the American Mathematical Society, v. 126, n. 7, p. 2033-2037, 1998.
Time Duration: 
2033-2037
Keywords: 
  • Entire functions in the Laguerre-Pölya class
  • Riemann hypothesis
  • Turân determinants
  • Turân inequalities
Source: 
http://dx.doi.org/10.1090/S0002-9939-98-04438-4
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/65596
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.