You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/67815
Title: 
The genome sequence of the gram-positive sugarcane pathogen Leifsonia xyli subsp. xyli
Author(s): 
Institution: 
  • Universidade de São Paulo (USP)
  • Alellyx Applied Genomics
  • Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA)
  • Instituto Biológico
  • Universidade Estadual Paulista (UNESP)
  • HSB
  • Ctro. de Citricultura Sylvio Moreira
  • Inst. Ludwig Pesquisa Sobre O Cancer
  • Univ. Federal do Mato Grosso do Sul
  • Universidade Federal de São Carlos (UFSCar)
  • Universidade de Mogi Das Cruzes
  • Universidade Estadual de Campinas (UNICAMP)
  • Inst. Agronômico de Campinas
  • Ludwig Institute for Cancer Research
  • BSES Limited
  • University of Queensland
ISSN: 
0894-0282
Abstract: 
The genome sequence of Leifsonia xyli subsp. xyli, which causes ratoon stunting disease and affects sugarcane worldwide, was determined. The single circular chromosome of Leifsonia xyli subsp. xyli CTCB07 was 2.6 Mb in length with a GC content of 68% and 2,044 predicted open reading frames. The analysis also revealed 307 predicted pseudogenes, which is more than any bacterial plant pathogen sequenced to date. Many of these pseudogenes, if functional, would likely be involved in the degradation of plant heteropolysaccharides, uptake of free sugars, and synthesis of amino acids. Although L. xyli subsp. xyli has only been identified colonizing the xylem vessels of sugarcane, the numbers of predicted regulatory genes and sugar transporters are similar to those in free-living organisms. Some of the predicted pathogenicity genes appear to have been acquired by lateral transfer and include genes for cellulase, pectinase, wilt-inducing protein, lysozyme, and desaturase. The presence of the latter may contribute to stunting, since it is likely involved in the synthesis of abscisic acid, a hormone that arrests growth. Our findings are consistent with the nutritionally fastidious behavior exhibited by L. xyli subsp. xyli and suggest an ongoing adaptation to the restricted ecological niche it inhabits.
Issue Date: 
1-Aug-2004
Citation: 
Molecular Plant-Microbe Interactions, v. 17, n. 8, p. 827-836, 2004.
Time Duration: 
827-836
Keywords: 
  • Actinomycetales
  • bacterial gene
  • bacterial genome
  • classification
  • DNA base composition
  • genetics
  • microbiology
  • molecular genetics
  • nucleotide sequence
  • pseudogene
  • sugarcane
  • Base Composition
  • Genes, Bacterial
  • Genome, Bacterial
  • Molecular Sequence Data
  • Pseudogenes
  • Saccharum
  • Actinobacteria (class)
  • Bacteria (microorganisms)
  • Leifsonia
  • Leifsonia xyli subsp. xyli
  • Posibacteria
  • Prokaryota
  • Saccharum hybrid cultivar
  • uncultured actinomycete
Source: 
http://dx.doi.org/10.1094/MPMI.2004.17.8.827
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/67815
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.