You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/69945
Title: 
On the existence and stability of periodic orbits in non ideal problems: General results
Author(s): 
Institution: 
  • Universidade Federal de Uberlândia (UFU)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0044-2275
Abstract: 
In this work, motivated by non-ideal mechanical systems, we investigate the following O.D.E. ẋ = f (x) + εg (x, t) + ε2g (x, t, ε), where x ∈ Ω ⊂ ℝn, g, g are T periodic functions of t and there is a 0 ∈ Ω such that f (a 0) = 0 and f′ (a0) is a nilpotent matrix. When n = 3 and f (x) = (0, q (x 3) , 0) we get results on existence and stability of periodic orbits. We apply these results in a non ideal mechanical system: the Centrifugal Vibrator. We make a stability analysis of this dynamical system and get a characterization of the Sommerfeld Effect as a bifurcation of periodic orbits. © 2007 Birkhäuser Verlag, Basel.
Issue Date: 
1-Nov-2007
Citation: 
Zeitschrift fur Angewandte Mathematik und Physik, v. 58, n. 6, p. 940-958, 2007.
Time Duration: 
940-958
Keywords: 
  • Bifurcation
  • Periodic orbits
  • Regular perturbation theory
  • Sommerfeld effect
  • Stability
Source: 
http://dx.doi.org/10.1007/s00033-006-5116-5
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/69945
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.