You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/7086
Title: 
Search schemes for random optimization algorithms that preserve the asymptotic distribution
Author(s): 
Institution: 
  • Universidade de Brasília (UnB)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0021-9002
Abstract: 
Markovian algorithms for estimating the global maximum or minimum of real valued functions defined on some domain Omega subset of R-d are presented. Conditions on the search schemes that preserve the asymptotic distribution are derived. Global and local search schemes satisfying these conditions are analysed and shown to yield sharper confidence intervals when compared to the i.i.d. case.
Issue Date: 
1-Sep-1999
Citation: 
Journal of Applied Probability. Sheffield: Applied Probability Trust, v. 36, n. 3, p. 825-836, 1999.
Time Duration: 
825-836
Publisher: 
Applied Probability Trust
Keywords: 
  • random search algorithms
  • global optimization
  • search schemes
  • asymptotic distribution
Source: 
  • http://projecteuclid.org/euclid.jap/1032374637
  • http://www.jstor.org/stable/3215444
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/7086
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.