You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/71147
Title: 
Automatic classification of enzyme family in protein annotation
Author(s): 
Institution: 
  • Universidade de Évora
  • Universidade Federal do Rio Grande do Sul (UFRGS)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
  • 0302-9743
  • 1611-3349
Abstract: 
Most of the tasks in genome annotation can be at least partially automated. Since this annotation is time-consuming, facilitating some parts of the process - thus freeing the specialist to carry out more valuable tasks - has been the motivation of many tools and annotation environments. In particular, annotation of protein function can benefit from knowledge about enzymatic processes. The use of sequence homology alone is not a good approach to derive this knowledge when there are only a few homologues of the sequence to be annotated. The alternative is to use motifs. This paper uses a symbolic machine learning approach to derive rules for the classification of enzymes according to the Enzyme Commission (EC). Our results show that, for the top class, the average global classification error is 3.13%. Our technique also produces a set of rules relating structural to functional information, which is important to understand the protein tridimensional structure and determine its biological function. © 2009 Springer Berlin Heidelberg.
Issue Date: 
14-Sep-2009
Citation: 
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 5676 LNBI, p. 86-96.
Time Duration: 
86-96
Keywords: 
  • Automatic classification
  • Biological functions
  • Classification errors
  • Enzymatic process
  • Enzyme commissions
  • Functional information
  • Genome annotation
  • Protein annotation
  • Protein functions
  • Sequence homology
  • Set of rules
  • Symbolic machine learning
  • Tri-dimensional structure
  • Automatic indexing
  • Biology
  • Enzymes
  • Bioinformatics
Source: 
http://dx.doi.org/10.1007/978-3-642-03223-3_8
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/71147
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.