You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/7118
Title: 
GLOBAL DYNAMICS of THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES
Author(s): 
Institution: 
  • Univ Autonoma Barcelona
  • Universidade Estadual Paulista (UNESP)
ISSN: 
0218-1274
Sponsorship: 
  • CICYT
  • Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
  • Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Sponsorship Process Number: 
  • CICYT: 2009SGR 410
  • CNPq: 305204/2009-2
  • MTM2008-03437
Abstract: 
In this paper by using the Poincare compactification of R(3) we describe the global dynamics of the Lorenz system(x) over dot = s(-x + y), (y) over dot = rx - y - xz, (z) over dot = -bz + xy,having some invariant algebraic surfaces. of course ( x, y, z) is an element of R(3) are the state variables and (s, r, b) is an element of R(3) are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity).
Issue Date: 
1-Oct-2010
Citation: 
International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 20, n. 10, p. 3137-3155, 2010.
Time Duration: 
3137-3155
Publisher: 
World Scientific Publ Co Pte Ltd
Keywords: 
  • Integrability
  • Lorenz system
  • Poincare compactification
  • dynamics at infinity invariant algebraic surface
Source: 
http://dx.doi.org/10.1142/S0218127410027593
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/7118
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.