Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/7118
- Title:
- GLOBAL DYNAMICS of THE LORENZ SYSTEM WITH INVARIANT ALGEBRAIC SURFACES
- Univ Autonoma Barcelona
- Universidade Estadual Paulista (UNESP)
- 0218-1274
- CICYT
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
- Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
- CICYT: 2009SGR 410
- CNPq: 305204/2009-2
- MTM2008-03437
- In this paper by using the Poincare compactification of R(3) we describe the global dynamics of the Lorenz system(x) over dot = s(-x + y), (y) over dot = rx - y - xz, (z) over dot = -bz + xy,having some invariant algebraic surfaces. of course ( x, y, z) is an element of R(3) are the state variables and (s, r, b) is an element of R(3) are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity).
- 1-Oct-2010
- International Journal of Bifurcation and Chaos. Singapore: World Scientific Publ Co Pte Ltd, v. 20, n. 10, p. 3137-3155, 2010.
- 3137-3155
- World Scientific Publ Co Pte Ltd
- Integrability
- Lorenz system
- Poincare compactification
- dynamics at infinity invariant algebraic surface
- http://dx.doi.org/10.1142/S0218127410027593
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/7118
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.