Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/7119
- Title:
- On the global dynamics of the Rabinovich system
- Univ Autonoma Barcelona
- Universidade Estadual Paulista (UNESP)
- 1751-8113
- In this paper by using the Poincare compactification in R(3) make a global analysis of the Rabinovich system(x) over dot = hy - v(1)x + yz, (y) over dot = hx - v(2)y - xz, (z) over dot = -v(3)z + xy,with (x, y, z) is an element of R(3) and ( h, v(1), v(2), v(3)) is an element of R(4). We give the complete description of its dynamics on the sphere at infinity. For ten sets of the parameter values the system has either first integrals or invariants. For these ten sets we provide the global phase portrait of the Rabinovich system in the Poincare ball (i.e. in the compactification of R(3) with the sphere S(2) of the infinity). We prove that for convenient values of the parameters the system has two families of singularly degenerate heteroclinic cycles. Then changing slightly the parameters we numerically found a four wings butterfly shaped strange attractor.
- 11-Jul-2008
- Journal of Physics A-mathematical and Theoretical. Bristol: Iop Publishing Ltd, v. 41, n. 27, p. 21, 2008.
- 21
- Iop Publishing Ltd
- http://dx.doi.org/10.1088/1751-8113/41/27/275210
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/7119
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.