You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/72214
Title: 
Stability of the null solution of the equation ẋ(t) = -a(t)x(t) + b(t)x([t])
Author(s): 
Institution: 
Universidade Estadual Paulista (UNESP)
ISSN: 
1311-8080
Abstract: 
The asymptotic stability of the null solution of the equation ẋ(t) = -a(t)x(t)+b(t)x([t]) with argument [t], where [t] designates the greatest integer function, is studied by means of dichotomic maps. © 2010 Academic Publications.
Issue Date: 
10-Dec-2010
Citation: 
International Journal of Pure and Applied Mathematics, v. 63, n. 4, p. 507-512, 2010.
Time Duration: 
507-512
Keywords: 
  • Dichotomic maps
  • Piecewise constant argument
  • Stability
Source: 
http://www.ijpam.eu/contents/2010-63-4/13/13.pdf
URI: 
Access Rights: 
Acesso aberto
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/72214
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.