Utilize este identificador para citar ou criar um link para este item:
http://acervodigital.unesp.br/handle/11449/72397
- Título:
- Kernel polynomials from L-orthogonal polynomials
- Universidade Estadual Paulista (UNESP)
- Universidade Federal do Tocantins (UFT)
- 0168-9274
- A positive measure ψ defined on [a,b] such that its moments μn=∫a btndψ(t) exist for n=0,±1,±2,⋯, is called a strong positive measure on [a,b]. If 0≤a<b≤∞ then the sequence of (monic) polynomials {Qn}, defined by ∫a bt-n+sQn(t)dψ(t)=0, s=0,1,⋯,n-1, is known to exist. We refer to these polynomials as the L-orthogonal polynomials with respect to the strong positive measure ψ. The purpose of this manuscript is to consider some properties of the kernel polynomials associated with these L-orthogonal polynomials. As applications, we consider the quadrature rules associated with these kernel polynomials. Associated eigenvalue problems and numerical evaluation of the nodes and weights of such quadrature rules are also considered. © 2010 IMACS. Published by Elsevier B.V. All rights reserved.
- 1-Mai-2011
- Applied Numerical Mathematics, v. 61, n. 5, p. 651-665, 2011.
- 651-665
- Eigenvalue problems
- Kernel polynomials
- Orthogonal Laurent polynomials
- Quadrature rules
- Eigenvalue problem
- L-orthogonal polynomials
- Numerical evaluations
- Orthogonal Laurent polynomial
- Eigenvalues and eigenfunctions
- Orthogonal functions
- Polynomials
- http://dx.doi.org/10.1016/j.apnum.2010.12.006
- Acesso aberto
- outro
- http://repositorio.unesp.br/handle/11449/72397
Não há nenhum arquivo associado com este item.
Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.