You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/74292
Title: 
Error estimates for a neumann problem in highly oscillating thin domains
Author(s): 
Institution: 
  • Universidade de São Paulo (USP)
  • Universidade Estadual Paulista (UNESP)
ISSN: 
  • 1078-0947
  • 1553-5231
Abstract: 
In this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter e > 0. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.
Issue Date: 
1-Jan-2013
Citation: 
Discrete and Continuous Dynamical Systems- Series A, v. 33, n. 2, p. 803-817, 2013.
Time Duration: 
803-817
Keywords: 
  • Correctors
  • Error estimate.
  • Homogenization
  • Thin domains
Source: 
http://dx.doi.org/10.3934/dcds.2013.33.803
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/74292
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.