Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/74292
- Title:
- Error estimates for a neumann problem in highly oscillating thin domains
- Universidade de São Paulo (USP)
- Universidade Estadual Paulista (UNESP)
- 1078-0947
- 1553-5231
- In this work we analyze the convergence of solutions of the Poisson equation with Neumann boundary conditions in a two-dimensional thin domain with highly oscillatory behavior. We consider the case where the height of the domain, amplitude and period of the oscillations are all of the same order, and given by a small parameter e > 0. Using an appropriate corrector approach, we show strong convergence and give error estimates when we replace the original solutions by the first-order expansion through the Multiple-Scale Method.
- 1-Jan-2013
- Discrete and Continuous Dynamical Systems- Series A, v. 33, n. 2, p. 803-817, 2013.
- 803-817
- Correctors
- Error estimate.
- Homogenization
- Thin domains
- http://dx.doi.org/10.3934/dcds.2013.33.803
- Acesso restrito
- outro
- http://repositorio.unesp.br/handle/11449/74292
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.