You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/75048
Title: 
Local attractors, degeneracy and analyticity: Symmetry effects on the locally coupled Kuramoto model
Author(s): 
Institution: 
  • Universidade Estadual Paulista (UNESP)
  • Universidade de São Paulo (USP)
ISSN: 
0960-0779
Abstract: 
In this work we study the local coupled Kuramoto model with periodic boundary conditions. Our main objective is to show how analytical solutions may be obtained from symmetry assumptions, and while we proceed on our endeavor we show apart from the existence of local attractors, some unexpected features resulting from the symmetry properties, such as intermittent and chaotic period phase slips, degeneracy of stable solutions and double bifurcation composition. As a result of our analysis, we show that stable fixed points in the synchronized region may be obtained with just a small amount of the existent solutions, and for a class of natural frequencies configuration we show analytical expressions for the critical synchronization coupling as a function of the number of oscillators, both exact and asymptotic. © 2013 Elsevier Ltd. All rights reserved.
Issue Date: 
2-Apr-2013
Citation: 
Chaos, Solitons and Fractals, v. 49, n. 1, p. 32-46, 2013.
Time Duration: 
32-46
Keywords: 
  • Analytical expressions
  • Analyticity
  • Kuramoto models
  • Local attractors
  • Periodic boundary conditions
  • Stable fixed points
  • Stable solutions
  • Symmetry properties
  • Dynamical systems
  • Mathematical models
  • Synchronization
Source: 
http://dx.doi.org/10.1016/j.chaos.2013.02.008
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/75048
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.