Você está no menu de acessibilidade

Utilize este identificador para citar ou criar um link para este item: http://acervodigital.unesp.br/handle/11449/86518
Título: 
Semigrupos de operadores lineares limitados: soluções Mild e Weak
Autor(es): 
Amaral, Jhony Sá do
Instituição: 
Universidade Estadual Paulista (UNESP)
Resumo: 
  • SejamAum operador fechado e densamente definido em um espa¸co de BanachX ef∈L 1 ([0,τ];X). O objetivo deste trabalho e apresentar uma condição necessária e suficiente para a existência de solução weak, dada por J. Ball, do problema { d dt u(t) = Au(t) +f(t), t > 0 u(0) = x. Neste caso, a solução weak coincide com a solução mild (dada pela Fórmula da Variação das Constantes). Como aplicação, estudaremos um problema de valor inicial e de fronteira para equações parabólicas de segunda ordem e concluiremos que sua solução fraca, no sentido usual de EDP’s, coincide com a solução mild do problema de Cauchy abstrato associado
  • LetAbe a closed linear operator densely defined on a Banach spaceXand f∈L 1 ([0,τ];X). The purpose of this work is to present a necessary and sufficient condition to the existence of weak solution, introduced by J. Ball, for the problem { d dt u(t) = Au(t) +f(t), t > 0 u(0) = x. In this case, the weak solution coincides with the mild solution (given by the Variation of the Constants Formula) As an application we study an initial boundary value problem for a second order parabolic and conclude that its weak solution, coincides with the mild solution of the associated Abstract Cauchy Problem
Data de publicação: 
22-Fev-2013
Citação: 
AMARAL, Jhony Sá do. Semigrupos de operadores lineares limitados: soluções Mild e Weak. 2013. 67 f. Dissertação (mestrado) - Universidade Estadual Paulista Julio de Mesquita Filho. Instituto de Biociências, Letras e Ciências Exatas, 2013.
Duração: 
67 f.
Publicador: 
Universidade Estadual Paulista (UNESP)
Palavras-chaves: 
  • Equações diferenciais parciais
  • Semigrupos
  • Cauchy, Problemas de
  • Differential equations, Partial
Endereço permanente: 
Direitos de acesso: 
Acesso aberto
Tipo: 
outro
Fonte completa:
http://repositorio.unesp.br/handle/11449/86518
Aparece nas coleções:Artigos, TCCs, Teses e Dissertações da Unesp

Não há nenhum arquivo associado com este item.
 

Itens do Acervo digital da UNESP são protegidos por direitos autorais reservados a menos que seja expresso o contrário.