Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/10216/56784
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bernardes, A. A. | - |
dc.contributor.author | Rogeri, J. G. | - |
dc.contributor.author | Marranghello, N. | - |
dc.contributor.author | Pereira, A. S. | - |
dc.contributor.author | Araujo, A. F. | - |
dc.contributor.author | Tavares, João Manuel R. S. | - |
dc.date.accessioned | 2014-05-27T11:26:23Z | - |
dc.date.accessioned | 2016-10-25T18:36:36Z | - |
dc.date.available | 2014-05-27T11:26:23Z | - |
dc.date.available | 2016-10-25T18:36:36Z | - |
dc.date.issued | 2012-02-13 | - |
dc.identifier | http://dx.doi.org/10.1007/978-94-007-0726-9_4 | - |
dc.identifier | http://hdl.handle.net/10216/56784 | - |
dc.identifier.citation | Computational Vision and Medical Image Processing, Proceedings of VipIMAGE 2011 - 3rd ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing, p. 193-197. | - |
dc.identifier.uri | http://hdl.handle.net/11449/73186 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/10216/56784 | - |
dc.description.abstract | The pathogens manifestation in plantations are the largest cause of damage in several cultivars, which may cause increase of prices and loss of crop quality. This paper presents a method for automatic classification of cotton diseases through feature extraction of leaf symptoms from digital images. Wavelet transform energy has been used for feature extraction while Support Vector Machine has been used for classification. Five situations have been diagnosed, namely: Healthy crop, Ramularia disease, Bacterial Blight, Ascochyta Blight, and unspecified disease. © 2012 Taylor & Francis Group. | en |
dc.format.extent | 193-197 | - |
dc.language.iso | eng | - |
dc.source | Scopus | - |
dc.subject | Ascochyta blight | - |
dc.subject | Automatic classification | - |
dc.subject | Bacterial blight | - |
dc.subject | Crop quality | - |
dc.subject | Digital image | - |
dc.subject | Foliar disease | - |
dc.subject | Cotton | - |
dc.subject | Damage detection | - |
dc.subject | Feature extraction | - |
dc.subject | Image processing | - |
dc.subject | Medical image processing | - |
dc.subject | Plants (botany) | - |
dc.subject | Crops | - |
dc.title | Identification of foliar diseases in cotton crop | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Institute of Mechanical Engineering and Industrial Management (INEGI) | - |
dc.description.affiliation | Department of Computer Science and Statistics IBILCE Sao Paulo State University ( UNESP), Sao Jose do Rio Preto-SP | - |
dc.description.affiliation | Department of Mechanical Engineering (DeMec) University of Porto (FEUP) Institute of Mechanical Engineering and Industrial Management (INEGI), Porto | - |
dc.description.affiliationUnesp | Department of Computer Science and Statistics IBILCE Sao Paulo State University ( UNESP), Sao Jose do Rio Preto-SP | - |
dc.identifier.doi | 10.1007/978-94-007-0726-9_4 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Computational Vision and Medical Image Processing, Proceedings of VipIMAGE 2011 - 3rd ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing | - |
dc.identifier.scopus | 2-s2.0-84856703865 | - |
dc.identifier.orcid | 0000-0003-1086-3312 | pt |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.