You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/10120
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOrlandi, Marcelo Ornaghi-
dc.contributor.authorRamirez, Antonio Jos-
dc.contributor.authorLeite, Edson Roberto-
dc.contributor.authorLongo, Elson-
dc.date.accessioned2014-05-20T13:29:51Z-
dc.date.accessioned2016-10-25T16:49:07Z-
dc.date.available2014-05-20T13:29:51Z-
dc.date.available2016-10-25T16:49:07Z-
dc.date.issued2008-03-01-
dc.identifierhttp://dx.doi.org/10.1021/cg7009379-
dc.identifier.citationCrystal Growth & Design. Washington: Amer Chemical Soc, v. 8, n. 3, p. 1067-1072, 2008.-
dc.identifier.issn1528-7483-
dc.identifier.urihttp://hdl.handle.net/11449/10120-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/10120-
dc.description.abstractThis article reports a study of the thermal stability and morphological changes in tin oxide nanobelts grown in the orthorhombic SnO phase. The nanobelts were heat-treated in a differential scanning calorimetry (DSC) furnace at 800 degrees C for I It in argon, oxygen, or synthetic air atmospheres. The samples were then characterized by DSC, X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and high resolution field emission scanning electron microscopy (FE-SEM). The results confirmed that the orthorhombic SnO phase is thermodynamically unstable, causing the belts to transform into the SnO2 phase when heat-treated. During the phase transition, if oxygen is available in the furnace atmosphere, nanofibers grow at the edge of nanobelts at about 50 degrees of the belts' growth direction, while particles grow on the belt surface in the absence of oxygen. Although the decomposition process reduces the nanobelt cell volume by 22%, most belts remain monocrystalline after the heat treatment. The results confirm that phase transition is a decomposition process, which explains the morphological changes in the belts based on metallic tin generated in the process.en
dc.format.extent1067-1072-
dc.language.isoeng-
dc.publisherAmer Chemical Soc-
dc.sourceWeb of Science-
dc.titleMorphological evolution of tin oxide nanobelts after phase transitionen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionLab Nacl Luz Sincrotron-
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)-
dc.description.affiliationUniv Estadual Paulista, Dept Quim & Fis, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationLab Nacl Luz Sincrotron, Campinas, SP, Brazil-
dc.description.affiliationUniversidade Federal de São Carlos (UFSCar), Dept Quim, BR-13560 São Carlos, SP, Brazil-
dc.description.affiliationUniv Estadual Paulista, Inst Quim, Araraquara, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Quim & Fis, BR-15385000 Ilha Solteira, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Inst Quim, Araraquara, SP, Brazil-
dc.identifier.doi10.1021/cg7009379-
dc.identifier.wosWOS:000253800200053-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofCrystal Growth & Design-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.