Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/10403
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cardin, Pedro Toniol | - |
dc.contributor.author | de Carvalho, Tiago | - |
dc.contributor.author | Llibre, Jaume | - |
dc.date.accessioned | 2014-05-20T13:30:39Z | - |
dc.date.accessioned | 2016-10-25T16:49:40Z | - |
dc.date.available | 2014-05-20T13:30:39Z | - |
dc.date.available | 2016-10-25T16:49:40Z | - |
dc.date.issued | 2012-01-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.na.2011.08.013 | - |
dc.identifier.citation | Nonlinear Analysis-theory Methods & Applications. Oxford: Pergamon-Elsevier B.V. Ltd, v. 75, n. 1, p. 143-152, 2012. | - |
dc.identifier.issn | 0362-546X | - |
dc.identifier.uri | http://hdl.handle.net/11449/10403 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/10403 | - |
dc.description.abstract | Let n be an even integer. We study the bifurcation of limit cycles from the periodic orbits of the n-dimensional linear center given by the differential system<(x)over dot>(1) = -x(2), <(x)over dot>(2) = x(1), ... , <(x)over dot>(n-1) = -x(n), <(x)over dot>(n) = x(n-1),perturbed inside a class of piecewise linear differential systems. Our main result shows that at most (4n - 6)(n/2-1) limit cycles can bifurcate up to first-order expansion of the displacement function with respect to a small parameter. For proving this result we use the averaging theory in a form where the differentiability of the system is not needed. (C) 2011 Elsevier Ltd. All rights reserved. | en |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | MICIIN | - |
dc.description.sponsorship | AGAUR | - |
dc.description.sponsorship | ICREA Academia | - |
dc.format.extent | 143-152 | - |
dc.language.iso | eng | - |
dc.publisher | Pergamon-Elsevier B.V. Ltd | - |
dc.source | Web of Science | - |
dc.subject | Limit cycles | en |
dc.subject | Bifurcation | en |
dc.subject | Control systems | en |
dc.subject | Averaging method | en |
dc.subject | Piecewise linear differential systems | en |
dc.subject | Center | en |
dc.title | Bifurcation of limit cycles from an n-dimensional linear center inside a class of piecewise linear differential systems | en |
dc.type | outro | - |
dc.contributor.institution | Univ Autonoma Barcelona | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.description.affiliation | Univ Autonoma Barcelona, Dept Matemat, Barcelona 08913, Catalonia, Spain | - |
dc.description.affiliation | IBILCE UNESP, BR-15054000 São Paulo, Brazil | - |
dc.description.affiliationUnesp | IBILCE UNESP, BR-15054000 São Paulo, Brazil | - |
dc.description.sponsorshipId | FAPESP: 07/07957-8 | - |
dc.description.sponsorshipId | FAPESP: 07/08707-5 | - |
dc.description.sponsorshipId | MICIIN: MTM2008-03437 | - |
dc.description.sponsorshipId | AGAUR: 2009SGR-410 | - |
dc.identifier.doi | 10.1016/j.na.2011.08.013 | - |
dc.identifier.wos | WOS:000296490000014 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Nonlinear Analysis-theory Methods & Applications | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.