You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/108643
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorOishi, Cássio Machiaveli [UNESP]-
dc.contributor.authorPalhares Júnior, Irineu Lopes-
dc.date.accessioned2014-08-13T14:50:49Z-
dc.date.accessioned2016-10-25T19:43:01Z-
dc.date.available2014-08-13T14:50:49Z-
dc.date.available2016-10-25T19:43:01Z-
dc.date.issued2014-02-26-
dc.identifier.citationPALHARES JÚNIOR, Irineu Lopes. Decomposições matriciais para escoamentos viscoelásticos incompressíveis. 2014. xii, 123 f. Dissertação (mestrado) - Universidade Estadual Paulista Júlio de Mesquita Filho, Faculdade de Ciências e Tecnologia, 2014.-
dc.identifier.urihttp://hdl.handle.net/11449/108643-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/108643-
dc.description.abstractOne difulty in the solution of complex viscoelasti ows o urs when numeri al ins- tabilities arise in the simulation. The instabilities result in a breakdown of numeri al s hemes used for solving the onstitutive equation for non-Newtonian uids. This di - ulty is known as the High Weissenberg Number Problem (HWNP). In this dissertation, we analyze matrix de ompositions applied to the onformation tensor A that are used as stabilization te hniques in the simulation of HWNP. In the rst part of this work, in order to understand the theory used to onstru t the stabilization approa hes, omprehensive studies have based on matrix de ompositi- ons been arried out. The goal is to investigate three di erent methods: the logarithm transformation, the symmetry fa torization, and the generi kernel- onformation tensor transformation...en
dc.description.abstractUma difuldade na solução de escoamentos viscoelásticos complexos o corre quando instabilidades numéricas surgem na simulação, resultantes de um colapso (breakdown) dos esquemas numéricos aplicados na solução da equação constitutiva para fluidos não- newtonianos. Essa difuldade é conhecida na literatura como o Problema de Alto Número de Weissenberg ou High Weissenberg Number Problem(HWNP). Nesta dissertação, investigamos de composições matriciais aplicadas ao tensor conformação A empregues como métodos de estabilização na simulação do HWNP. Na primeira parte deste trabalho, com o propósito de compreender a teoria usada para construir as abordagens de estabilização, efetuamos um amplo estudo sobre de composições matri iais, objetivando investigar três métodos diferentes: log-conformação, de composição do tipo raiz quadrada e núcleo-conformação. Após isso, no contexto do método Marker- and-Cell, empregamos discretizações por diferenças finitas juntamente com o método de projeção na implementação das de composições matriciais, visando solucionar o HWNP...pt
dc.format.extentxii, 123 f. : il.-
dc.language.isopor-
dc.publisherUniversidade Estadual Paulista (UNESP)-
dc.sourceAleph-
dc.subjectComputação - Matematicapt
dc.subjectFluidodinâmica computacionalpt
dc.subjectMateriais viscoelasticospt
dc.subjectComputer science - Mathematicspt
dc.titleDecomposições matriciais para escoamentos viscoelásticos incompressíveispt
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.rights.accessRightsAcesso aberto-
dc.identifier.file000760008.pdf-
dc.identifier.aleph000760008-
dc.identifier.capes33004129046P9-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.