You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/111820
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHelou, Elias Salomao-
dc.contributor.authorCensor, Yair-
dc.contributor.authorChen, Tai-Been-
dc.contributor.authorChern, I-Liang-
dc.contributor.authorDe Pierro, Alvaro Rodolfo-
dc.contributor.authorJiang, Ming-
dc.contributor.authorLu, Henry Horng-Shing-
dc.date.accessioned2014-12-03T13:09:00Z-
dc.date.accessioned2016-10-25T20:09:48Z-
dc.date.available2014-12-03T13:09:00Z-
dc.date.available2016-10-25T20:09:48Z-
dc.date.issued2014-05-01-
dc.identifierhttp://dx.doi.org/10.1088/0266-5611/30/5/055003-
dc.identifier.citationInverse Problems. Bristol: Iop Publishing Ltd, v. 30, n. 5, 20 p., 2014.-
dc.identifier.issn0266-5611-
dc.identifier.urihttp://hdl.handle.net/11449/111820-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/111820-
dc.description.abstractWe study the maximum likelihood model in emission tomography and propose a new family of algorithms for its solution, called string-averaging expectation maximization (SAEM). In the string-averaging algorithmic regime, the index set of all underlying equations is split into subsets, called 'strings', and the algorithm separately proceeds along each string, possibly in parallel. Then, the end-points of all strings are averaged to form the next iterate. SAEM algorithms with several strings present better practical merits than the classical row-action maximum-likelihood algorithm. We present numerical experiments showing the effectiveness of the algorithmic scheme, using data of image reconstruction problems. Performance is evaluated from the computational cost and reconstruction quality viewpoints. A complete convergence theory is also provided.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipUnited States-Israel Binational Science Foundation (BSF)-
dc.description.sponsorshipUS Department of Army award-
dc.description.sponsorshipNational Science Council of the Republic of China, Taiwan-
dc.description.sponsorshipNational Center for Theoretical Sciences (Taipei Office)-
dc.description.sponsorshipNational Science Council of the Republic of China-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipNational Basic Research and Development Program of China (973 Program)-
dc.description.sponsorshipNational Science Foundation of China-
dc.description.sponsorshipNational Science Council-
dc.description.sponsorshipNational Center for Theoretical Sciences-
dc.description.sponsorshipCenter of Mathematical Modeling and Scientific Computing at National Chiao Tung University in Taiwan-
dc.format.extent20-
dc.language.isoeng-
dc.publisherIop Publishing Ltd-
dc.sourceWeb of Science-
dc.subjectpositron emission tomography (PET)en
dc.subjectstring-averagingen
dc.subjectblock-iterativeen
dc.subjectexpectation-maximization (EM) algorithmen
dc.subjectordered subsets expectation maximization (OSEM) algorithmen
dc.subjectrelaxed EMen
dc.subjectstring-averaging EM algorithmen
dc.titleString-averaging expectation-maximization for maximum likelihood estimation in emission tomographyen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniv Haifa-
dc.contributor.institutionI Shou Univ-
dc.contributor.institutionNatl Chiao Tung Univ-
dc.contributor.institutionNatl Taiwan Univ-
dc.contributor.institutionPeking Univ-
dc.description.affiliationState Univ Sao Paulo, Dept Appl Math & Stat, Sao Carlos, SP, Brazil-
dc.description.affiliationUniv Haifa, Dept Math, IL-3190501 Haifa, Israel-
dc.description.affiliationI Shou Univ, Dept Med Imaging & Radiol Sci, Kaohsiung 82445, Taiwan-
dc.description.affiliationNatl Chiao Tung Univ, Ctr Math Modeling & Sci Comp, Dept Appl Math, Hsinchu 30010, Taiwan-
dc.description.affiliationNatl Taiwan Univ, Dept Math, Taipei 10617, Taiwan-
dc.description.affiliationPeking Univ, Beijing Int Ctr Math Res, Sch Math Sci, LMAM, Beijing 100871, Peoples R China-
dc.description.affiliationNatl Chiao Tung Univ, Inst Stat, Hsinchu 30010, Taiwan-
dc.description.affiliationUnespState Univ Sao Paulo, Dept Appl Math & Stat, Sao Carlos, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 13/16508-3-
dc.description.sponsorshipIdUnited States-Israel Binational Science Foundation (BSF)200912-
dc.description.sponsorshipIdUS Department of Army awardW81XWH-10-1-0170-
dc.description.sponsorshipIdNational Science Council of the Republic of China, TaiwanNSC 97-2118-M-214-001-MY2-
dc.description.sponsorshipIdNational Science Council of the Republic of ChinaNSC 99-2115-M-002-003-MY3-
dc.description.sponsorshipIdCNPq: 301064/2009-1-
dc.description.sponsorshipIdNational Basic Research and Development Program of China (973 Program)2011CB809105-
dc.description.sponsorshipIdNational Science Foundation of China61121002-
dc.description.sponsorshipIdNational Science Foundation of China10990013-
dc.description.sponsorshipIdNational Science Foundation of China60325101-
dc.identifier.doi10.1088/0266-5611/30/5/055003-
dc.identifier.wosWOS:000336265400003-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofInverse Problems-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.