Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/111838
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Biscolla, Laura M. O. | - |
dc.contributor.author | Llibre, Jaume | - |
dc.contributor.author | Oliva, Waldyr M. | - |
dc.date.accessioned | 2014-12-03T13:09:01Z | - |
dc.date.accessioned | 2016-10-25T20:09:50Z | - |
dc.date.available | 2014-12-03T13:09:01Z | - |
dc.date.available | 2016-10-25T20:09:50Z | - |
dc.date.issued | 2013-08-01 | - |
dc.identifier | http://dx.doi.org/10.1007/s00033-012-0279-8 | - |
dc.identifier.citation | Zeitschrift Fur Angewandte Mathematik Und Physik. Basel: Springer Basel Ag, v. 64, n. 4, p. 991-1003, 2013. | - |
dc.identifier.issn | 0044-2275 | - |
dc.identifier.uri | http://hdl.handle.net/11449/111838 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/111838 | - |
dc.description.abstract | By a sequence of rollings without slipping or twisting along segments of a straight line of the plane, a spherical ball of unit radius has to be transferred from an initial state to an arbitrary final state taking into account the orientation of the ball. We provide a new proof that with at most 3 moves, we can go from a given initial state to an arbitrary final state. The first proof of this result is due to Hammersley ( 1983). His proof is more algebraic than ours which is more geometric. We also showed that generically no one of the three moves, in any elimination of the spin discrepancy, may have length equal to an integral multiple of 2 pi. | en |
dc.description.sponsorship | MICINN/FEDER | - |
dc.description.sponsorship | AGAUR | - |
dc.description.sponsorship | ICREA Academia | - |
dc.description.sponsorship | FCT (Portugal) | - |
dc.format.extent | 991-1003 | - |
dc.language.iso | eng | - |
dc.publisher | Springer | - |
dc.source | Web of Science | - |
dc.subject | Control theory | en |
dc.subject | Rolling ball | en |
dc.subject | Kendall problem | en |
dc.subject | Hammersley problem | en |
dc.title | The rolling ball problem on the plane revisited | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Univ Sao Judas Tadeu | - |
dc.contributor.institution | Univ Autonoma Barcelona | - |
dc.contributor.institution | Univ Tecn Lisboa | - |
dc.contributor.institution | Universidade de São Paulo (USP) | - |
dc.description.affiliation | Univ Estadual Paulista, BR-04026002 Sao Paulo, Brazil | - |
dc.description.affiliation | Univ Sao Judas Tadeu, BR-03166000 Sao Paulo, Brazil | - |
dc.description.affiliation | Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Catalonia, Spain | - |
dc.description.affiliation | Univ Tecn Lisboa, CAMGSD, ISR, Inst Super Tecn, P-1049001 Lisbon, Portugal | - |
dc.description.affiliation | Univ Sao Paulo, Dept Matemat Aplicada, Inst Matemat & Estat, BR-05508900 Sao Paulo, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, BR-04026002 Sao Paulo, Brazil | - |
dc.description.sponsorshipId | MICINN/FEDERMTM 2008-03437 | - |
dc.description.sponsorshipId | AGAUR2009SGR 410 | - |
dc.description.sponsorshipId | FCT (Portugal)POC-TI/FEDER | - |
dc.description.sponsorshipId | FCT (Portugal)PDCT/MAT/56476/2004 | - |
dc.identifier.doi | 10.1007/s00033-012-0279-8 | - |
dc.identifier.wos | WOS:000321977600006 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Zeitschrift fur Angewandte Mathematik und Physik | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.