You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112083
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNunes, Thiago M.-
dc.contributor.authorCoelho, Andre L. V.-
dc.contributor.authorLima, Clodoaldo A. M.-
dc.contributor.authorPapa, João Paulo-
dc.contributor.authorAlbuquerque, Victor Hugo C. de-
dc.date.accessioned2014-12-03T13:09:13Z-
dc.date.accessioned2016-10-25T20:10:23Z-
dc.date.available2014-12-03T13:09:13Z-
dc.date.available2016-10-25T20:10:23Z-
dc.date.issued2014-07-20-
dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2014.01.020-
dc.identifier.citationNeurocomputing. Amsterdam: Elsevier Science Bv, v. 136, p. 103-123, 2014.-
dc.identifier.issn0925-2312-
dc.identifier.urihttp://hdl.handle.net/11449/112083-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/112083-
dc.description.abstractEpilepsy refers to a set of chronic neurological syndromes characterized by transient and unexpected electrical disturbances of the brain. The detailed analysis of the electroencephalogram (EEG) is one of the most influential steps for the proper diagnosis of this disorder. This work presents a systematic performance evaluation of the recently introduced optimum path forest (OPF) classifier when coping with the task of epilepsy diagnosis directly through EEG signal analysis. For this purpose, we have made extensive use of a benchmark dataset composed of five classes, whose full discrimination is very hard to achieve. Four types of wavelet functions and three well-known filter methods were considered for the tasks of feature extraction and selection, respectively. Moreover, support vector machines configured with radial basis function (SVM-RBF) kernel, multilayer perceptron neural networks (ANN-MLP), and Bayesian classifiers were used for comparison in terms of effectiveness and efficiency. Overall, the results evidence the outperformance of the OPF classifier in both types of criteria. Indeed, the OPF classifier was usually extremely fast, with average training/testing times much lower than those required by SVM-RBF and ANN-MLP. Moreover, when configured with Coiflets as feature extractors, the performance scores achieved by the OPF classifier include 89.2% as average accuracy and sensitivity/specificity values higher than 80% for all five classes. (C) 2014 Elsevier B.V. All rights reserved.en
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipCeara Foundation for the Support of Scientific and Technological Development (FUNCAP)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.format.extent103-123-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectEEG signal classificationen
dc.subjectOptimum path foresten
dc.subjectBayesianen
dc.subjectSupport vector machinesen
dc.subjectMultilayer perceptronsen
dc.subjectWaveletsen
dc.titleEEG signal classification for epilepsy diagnosis via optimum path forest - A systematic assessmenten
dc.typeoutro-
dc.contributor.institutionUniv Fortaleza-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Fortaleza, Ctr Ciencias Tecnol, Fortaleza, Ceara, Brazil-
dc.description.affiliationUniv Fortaleza, Programa Posgrad Informat Aplicada, Fortaleza, Ceara, Brazil-
dc.description.affiliationUniv Sao Paulo, Escola Artes Ciencias & Humanidades, Sao Paulo, Brazil-
dc.description.affiliationUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, Dept Ciencia Comp, Bauru, SP, Brazil-
dc.description.sponsorshipIdCeara Foundation for the Support of Scientific and Technological Development (FUNCAP)35.0053/2011.1-
dc.description.sponsorshipIdCNPq: 475406/2010-9-
dc.description.sponsorshipIdCNPq: 304603/2012-0-
dc.description.sponsorshipIdCNPq: 308816/2012-9-
dc.description.sponsorshipIdCNPq: 303182/2011-3-
dc.description.sponsorshipIdFAPESP: 09/16206-1-
dc.identifier.doi10.1016/j.neucom.2014.01.020-
dc.identifier.wosWOS:000335708800012-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofNeurocomputing-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.