You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112148
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSilva, Aldo A. V. da-
dc.contributor.authorSilva, Inara A. F.-
dc.contributor.authorTeixeira Filho, Marcelo C. M.-
dc.contributor.authorBuzetti, Salatier-
dc.contributor.authorTeixeira, Marcelo C. M.-
dc.date.accessioned2014-12-03T13:10:27Z-
dc.date.accessioned2016-10-25T20:10:31Z-
dc.date.available2014-12-03T13:10:27Z-
dc.date.available2016-10-25T20:10:31Z-
dc.date.issued2014-02-01-
dc.identifierhttp://dx.doi.org/10.1590/S1415-43662014000200008-
dc.identifier.citationRevista Brasileira de Engenharia Agricola e Ambiental. Joao Pessoa Pb: Univ Fed Paraiba Ccsa, v. 18, n. 2, p. 180-187, 2014.-
dc.identifier.issn1807-1929-
dc.identifier.urihttp://hdl.handle.net/11449/112148-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/112148-
dc.description.abstractCurrently new techniques for data processing, such as neural networks, fuzzy logic and hybrid systems are used to develop predictive models of complex systems and to estimate the desired parameters. In this article the use of an adaptive neuro fuzzy inference system was investigated to estimate the productivity of wheat, using a database of combination of the following treatments: five N doses (0, 50, 100, 150 and 200 kg ha(-1)), three sources (Entec, ammonium sulfate and urea), two application times of N (at sowing or at side-dressing) and two wheat cultivars (IAC 370 and E21), that were evaluated during two years in Selviria, Mato Grosso do Sul, Brazil. Through the input and output data, the system of adaptive neuro fuzzy inference learns, and then can estimate a new value of wheat yield with different N doses. The productivity prediciton error of wheat in function of five N doses, using a neuro fuzzy system, was smaller than that one obtained with a quadratic approximation. The results show that the neuro fuzzy system is a viable prediction model for estimating the wheat yield in function of N doses.en
dc.format.extent180-187-
dc.language.isopor-
dc.publisherUniv Fed Paraiba Ccsa-
dc.sourceWeb of Science-
dc.subjectTriticum aestivum L.en
dc.subjectnitrogenen
dc.subjectneural networksen
dc.subjectANFISen
dc.subjecthybrid systemsen
dc.titleEstimativa da produtividade de trigo em função da adubação nitrogenada utilizando modelagem neuro fuzzypt
dc.title.alternativeEstimate of wheat grain yield as function of nitrogen fertilization using neuro fuzzy modelingen
dc.typeoutro-
dc.contributor.institutionDAI IFMT-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationDAI IFMT, Cuiaba, MT, Brazil-
dc.description.affiliationDEFERS FEIS UNESP, Ilha Solteira, SP, Brazil-
dc.description.affiliationDEE FEIS UNESP, Ilha Solteira, SP, Brazil-
dc.description.affiliationUnespDEFERS FEIS UNESP, Ilha Solteira, SP, Brazil-
dc.description.affiliationUnespDEE FEIS UNESP, Ilha Solteira, SP, Brazil-
dc.identifier.wosWOS:000333402800008-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileS1415-43662014000200008.pdf-
dc.relation.ispartofRevista Brasileira de Engenharia Agrícola e Ambiental-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.