You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112610
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAlves, A. F.-
dc.contributor.authorPina, D. R.-
dc.contributor.authorBacchim Neto, F. A.-
dc.contributor.authorRibeiro, S. M.-
dc.contributor.authorMiranda, J. R. A.-
dc.contributor.authorWhiting, B. R.-
dc.contributor.authorHoeschen, C.-
dc.contributor.authorKontos, D.-
dc.date.accessioned2014-12-03T13:10:52Z-
dc.date.accessioned2016-10-25T20:11:35Z-
dc.date.available2014-12-03T13:10:52Z-
dc.date.available2016-10-25T20:11:35Z-
dc.date.issued2014-01-01-
dc.identifierhttp://dx.doi.org/10.1117/12.2043310-
dc.identifier.citationMedical Imaging 2014: Physics Of Medical Imaging. Bellingham: Spie-int Soc Optical Engineering, v. 9033, 6 p., 2014.-
dc.identifier.issn0277-786X-
dc.identifier.urihttp://hdl.handle.net/11449/112610-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/112610-
dc.description.abstractOur main purpose in this study was to quantify biological tissue in computed tomography (CT) examinations with the aim of developing a skull and a chest patient equivalent phantom (PEP), both specific to infants, aged between 1 and 5 years old. This type of phantom is widely used in the development of optimization procedures for radiographic techniques, especially in computed radiography (CR) systems. In order to classify and quantify the biological tissue, we used a computational algorithm developed in Matlab (R). The algorithm performed a histogram of each CT slice followed by a Gaussian fitting of each tissue type. The algorithm determined the mean thickness for the biological tissues (bone, soft, fat, and lung) and also converted them into the corresponding thicknesses of the simulator material (aluminum, PMMA, and air). We retrospectively analyzed 148 CT examinations of infant patients, 56 for skull exams and 92 were for chest. The results provided sufficient data to construct a phantom to simulate the infant chest and skull in the posterior anterior or anterior posterior (PA/AP) view. Both patient equivalent phantoms developed in this study can be used to assess physical variables such as noise power spectrum (NPS) and signal to noise ratio (SNR) or perform dosimetric control specific to pediatric protocols.en
dc.format.extent6-
dc.language.isoeng-
dc.publisherSpie - Int Soc Optical Engineering-
dc.sourceWeb of Science-
dc.subjecttissue quantificationen
dc.subjectcomputational algorithmen
dc.subjectpatient equivalent phantomen
dc.subjectchest phantomen
dc.subjectskull phantomen
dc.subjectpediatric radiologyen
dc.subjectpediatric phantomen
dc.titleQuantification of Biological Tissue and Construction of Patient Equivalent Phantom (Skull and Chest) for Infants (1-5 years old)en
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Estadual Paulista UNESP, Botucatu Biosci Inst, Dept Phys & Biophys, BR-18618000 Botucatu, SP, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Botucatu Biosci Inst, Dept Phys & Biophys, BR-18618000 Botucatu, SP, Brazil-
dc.identifier.doi10.1117/12.2043310-
dc.identifier.wosWOS:000338775800164-
dc.rights.accessRightsAcesso restrito-
dc.identifier.fileWOS000338775800164.pdf-
dc.relation.ispartofMedical Imaging 2014: Physics Of Medical Imaging-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.