You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112880
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFilho, Geraldo P. R.-
dc.contributor.authorUeyama, Jo-
dc.contributor.authorVillas, Leandro A.-
dc.contributor.authorPinto, Alex R.-
dc.contributor.authorGoncalves, Vinicius P.-
dc.contributor.authorPessin, Gustavo-
dc.contributor.authorPazzi, Richard W.-
dc.contributor.authorBraun, Torsten-
dc.date.accessioned2014-12-03T13:11:07Z-
dc.date.accessioned2016-10-25T20:12:13Z-
dc.date.available2014-12-03T13:11:07Z-
dc.date.available2016-10-25T20:12:13Z-
dc.date.issued2014-01-01-
dc.identifierhttp://dx.doi.org/10.3390/s140100848-
dc.identifier.citationSensors. Basel: Mdpi Ag, v. 14, n. 1, p. 848-867, 2014.-
dc.identifier.issn1424-8220-
dc.identifier.urihttp://hdl.handle.net/11449/112880-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/112880-
dc.description.abstractIn this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.en
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipINCT-SEC (National Institute of Science and Technology Critical Embedded Systems)-
dc.format.extent848-867-
dc.language.isoeng-
dc.publisherMdpi Ag-
dc.sourceWeb of Science-
dc.subjectsmart griden
dc.subjectwireless sensor networksen
dc.subjectelectronic equipmenten
dc.subjectenergy consumptionen
dc.subjectfeedbacken
dc.titleNodePM: A Remote Monitoring Alert System for Energy Consumption Using Probabilistic Techniquesen
dc.typeoutro-
dc.contributor.institutionUniversidade de São Paulo (USP)-
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionVale Inst Technol-
dc.contributor.institutionUniv Ontario Inst Technol-
dc.contributor.institutionUniv Bern-
dc.description.affiliationUniv Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil-
dc.description.affiliationUniv Estadual Campinas, Inst Comp, BR-13083852 Campinas, SP, Brazil-
dc.description.affiliationSao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.affiliationVale Inst Technol, BR-66055090 Belem, PA, Brazil-
dc.description.affiliationUniv Ontario Inst Technol, Fac Business & Informat Technol, Oshawa, ON 2000, Canada-
dc.description.affiliationUniv Bern, Inst Comp Sci & Appl Math, CH-3012 Bern, Switzerland-
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp Sci & Stat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdFAPESP: 12/11206-6-
dc.description.sponsorshipIdFAPESP: 12/22550-0-
dc.description.sponsorshipIdCNPq: DS-7901025/M-
dc.description.sponsorshipIdINCT-SEC (National Institute of Science and Technology Critical Embedded Systems)573963/2008-8-
dc.description.sponsorshipIdINCT-SEC (National Institute of Science and Technology Critical Embedded Systems)2008/57870-9-
dc.identifier.doi10.3390/s140100848-
dc.identifier.wosWOS:000336039100046-
dc.rights.accessRightsAcesso aberto-
dc.identifier.fileWOS000336039100046.pdf-
dc.relation.ispartofSensors-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.