You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112912
Title: 
Limit Cycles for a Class of Continuous and Discontinuous Cubic Polynomial Differential Systems
Author(s): 
Institution: 
  • Univ Autonoma Barcelona
  • Universidade Estadual Paulista (UNESP)
ISSN: 
1575-5460
Sponsorship: 
  • MINECO/FEDER
  • AGAUR
  • ICREA Academia
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Sponsorship Process Number: 
  • MINECO/FEDERMTM2009-03437
  • AGAUR2009SGR-410
  • ICREA Academia316338
  • ICREA Academia318999
  • CAPES: PHB-2009-0025-PC
  • FEDER-UNAB10-4E-378
  • FAPESP: 10/17956-1
Abstract: 
We study the maximum number of limit cycles that bifurcate from the periodic solutions of the family of isochronous cubic polynomial centers(x) over dot = y(-1 + 2 alpha x + 2 beta x(2)), (y) over dot = x + alpha(y(2) - x(2)) + 2 beta xy(2), alpha is an element of R, beta < 0,when it is perturbed inside the classes of all continuous and discontinuous cubic polynomial differential systems with two zones of discontinuity separated by a straight line. We obtain that this number is 3 for the perturbed continuous systems and at least 12 for the discontinuous ones using the averaging method of first order.
Issue Date: 
1-Apr-2014
Citation: 
Qualitative Theory Of Dynamical Systems. Basel: Springer Basel Ag, v. 13, n. 1, p. 129-148, 2014.
Time Duration: 
129-148
Publisher: 
Springer
Keywords: 
  • Polynomial vector field
  • Limit cycle
  • Averaging method
  • Periodic orbit
  • Isochronous center
Source: 
http://dx.doi.org/10.1007/s12346-014-0109-9
URI: 
Access Rights: 
Acesso restrito
Type: 
outro
Source:
http://repositorio.unesp.br/handle/11449/112912
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.