You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112912
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLlibre, Jaume-
dc.contributor.authorLopes, Bruno D.-
dc.contributor.authorDe Moraes, Jaime R.-
dc.date.accessioned2014-12-03T13:11:09Z-
dc.date.accessioned2016-10-25T20:12:17Z-
dc.date.available2014-12-03T13:11:09Z-
dc.date.available2016-10-25T20:12:17Z-
dc.date.issued2014-04-01-
dc.identifierhttp://dx.doi.org/10.1007/s12346-014-0109-9-
dc.identifier.citationQualitative Theory Of Dynamical Systems. Basel: Springer Basel Ag, v. 13, n. 1, p. 129-148, 2014.-
dc.identifier.issn1575-5460-
dc.identifier.urihttp://hdl.handle.net/11449/112912-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/112912-
dc.description.abstractWe study the maximum number of limit cycles that bifurcate from the periodic solutions of the family of isochronous cubic polynomial centers(x) over dot = y(-1 + 2 alpha x + 2 beta x(2)), (y) over dot = x + alpha(y(2) - x(2)) + 2 beta xy(2), alpha is an element of R, beta < 0,when it is perturbed inside the classes of all continuous and discontinuous cubic polynomial differential systems with two zones of discontinuity separated by a straight line. We obtain that this number is 3 for the perturbed continuous systems and at least 12 for the discontinuous ones using the averaging method of first order.en
dc.description.sponsorshipMINECO/FEDER-
dc.description.sponsorshipAGAUR-
dc.description.sponsorshipICREA Academia-
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.format.extent129-148-
dc.language.isoeng-
dc.publisherSpringer-
dc.sourceWeb of Science-
dc.subjectPolynomial vector fielden
dc.subjectLimit cycleen
dc.subjectAveraging methoden
dc.subjectPeriodic orbiten
dc.subjectIsochronous centeren
dc.titleLimit Cycles for a Class of Continuous and Discontinuous Cubic Polynomial Differential Systemsen
dc.typeoutro-
dc.contributor.institutionUniv Autonoma Barcelona-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, Barcelona, Catalonia, Spain-
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Matemat, BR-15054000 Sao Paulo, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Matemat, BR-15054000 Sao Paulo, Brazil-
dc.description.sponsorshipIdMINECO/FEDERMTM2009-03437-
dc.description.sponsorshipIdAGAUR2009SGR-410-
dc.description.sponsorshipIdICREA Academia316338-
dc.description.sponsorshipIdICREA Academia318999-
dc.description.sponsorshipIdCAPES: PHB-2009-0025-PC-
dc.description.sponsorshipIdFEDER-UNAB10-4E-378-
dc.description.sponsorshipIdFAPESP: 10/17956-1-
dc.identifier.doi10.1007/s12346-014-0109-9-
dc.identifier.wosWOS:000334414100007-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofQualitative Theory of Dynamical Systems-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.