You are in the accessibility menu

Please use this identifier to cite or link to this item: http://acervodigital.unesp.br/handle/11449/112915
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCastillo, K.-
dc.contributor.authorCosta, M. S.-
dc.contributor.authorRanga, A. Sri-
dc.contributor.authorVeronese, D. O.-
dc.date.accessioned2014-12-03T13:11:09Z-
dc.date.accessioned2016-10-25T20:12:18Z-
dc.date.available2014-12-03T13:11:09Z-
dc.date.available2016-10-25T20:12:18Z-
dc.date.issued2014-08-01-
dc.identifierhttp://dx.doi.org/10.1016/j.jat.2014.05.007-
dc.identifier.citationJournal Of Approximation Theory. San Diego: Academic Press Inc Elsevier Science, v. 184, p. 146-162, 2014.-
dc.identifier.issn0021-9045-
dc.identifier.urihttp://hdl.handle.net/11449/112915-
dc.identifier.urihttp://acervodigital.unesp.br/handle/11449/112915-
dc.description.abstractThe objective of this manuscript is to study directly the Favard type theorem associated with the three term recurrence formulaRn+1(Z) = [(1 + ic(n+i))z + (1 - ic(n+1))]R-n(z) - 4d(n+1)zR(n-1)(z), n >= 1,with R-0(z) = 1 and R-1(z) = (1 + ic(1))z + (1 - ic(1)), where {c(n)}(n=1)(infinity) is a real sequence and {d(n)}(n=1)(infinity) is a positive chain sequence. We establish that there exists a unique nontrivial probability measure mu on the unit circle for which {R-n(z) - 2(1 - m(n))Rn-1(Z)} gives the sequence of orthogonal polynomials. Here, {m(n)}(n=0)(infinity) is the minimal parameter sequence of the positive chain sequence {d(n)}(n=1)(infinity). The element d(1) of the chain sequence, which does not affect the polynomials R-n, has an influence in the derived probability measure mu and hence, in the associated orthogonal polynomials on the unit circle. To be precise, if {M-n}(n=0)(infinity) is the maximal parameter sequence of the chain sequence, then the measure mu is such that M-0 is the size of its mass at z = 1. An example is also provided to completely illustrate the results obtained.en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)-
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)-
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)-
dc.description.sponsorshipDireccion General de Investigacion, Ministerio de Economia y Competitividad of Spain-
dc.format.extent146-162-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.sourceWeb of Science-
dc.subjectSzegö polynomialsen
dc.subjectKernel polynomialsen
dc.subjectPara-orthogonal polynomialsen
dc.subjectChain sequencesen
dc.subjectContinued fractionsen
dc.titleA Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formulaen
dc.typeoutro-
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)-
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)-
dc.contributor.institutionUniversidade Federal do Triângulo Mineiro (UFTM)-
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.affiliationUniv Fed Uberlandia, Fac Matemat, BR-38408100 Uberlandia, MG, Brazil-
dc.description.affiliationUniv Fed Triangulo Mineiro, Inst Ciencias Tecnol & Exatas, BR-38064200 Uberaba, MG, Brazil-
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil-
dc.description.sponsorshipIdDireccion General de Investigacion, Ministerio de Economia y Competitividad of SpainMTM2012-36732-C03-01-
dc.identifier.doi10.1016/j.jat.2014.05.007-
dc.identifier.wosWOS:000338399100006-
dc.rights.accessRightsAcesso restrito-
dc.relation.ispartofJournal of Approximation Theory-
Appears in Collections:Artigos, TCCs, Teses e Dissertações da Unesp

There are no files associated with this item.
 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.