Please use this identifier to cite or link to this item:
http://acervodigital.unesp.br/handle/11449/112915
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Castillo, K. | - |
dc.contributor.author | Costa, M. S. | - |
dc.contributor.author | Ranga, A. Sri | - |
dc.contributor.author | Veronese, D. O. | - |
dc.date.accessioned | 2014-12-03T13:11:09Z | - |
dc.date.accessioned | 2016-10-25T20:12:18Z | - |
dc.date.available | 2014-12-03T13:11:09Z | - |
dc.date.available | 2016-10-25T20:12:18Z | - |
dc.date.issued | 2014-08-01 | - |
dc.identifier | http://dx.doi.org/10.1016/j.jat.2014.05.007 | - |
dc.identifier.citation | Journal Of Approximation Theory. San Diego: Academic Press Inc Elsevier Science, v. 184, p. 146-162, 2014. | - |
dc.identifier.issn | 0021-9045 | - |
dc.identifier.uri | http://hdl.handle.net/11449/112915 | - |
dc.identifier.uri | http://acervodigital.unesp.br/handle/11449/112915 | - |
dc.description.abstract | The objective of this manuscript is to study directly the Favard type theorem associated with the three term recurrence formulaRn+1(Z) = [(1 + ic(n+i))z + (1 - ic(n+1))]R-n(z) - 4d(n+1)zR(n-1)(z), n >= 1,with R-0(z) = 1 and R-1(z) = (1 + ic(1))z + (1 - ic(1)), where {c(n)}(n=1)(infinity) is a real sequence and {d(n)}(n=1)(infinity) is a positive chain sequence. We establish that there exists a unique nontrivial probability measure mu on the unit circle for which {R-n(z) - 2(1 - m(n))Rn-1(Z)} gives the sequence of orthogonal polynomials. Here, {m(n)}(n=0)(infinity) is the minimal parameter sequence of the positive chain sequence {d(n)}(n=1)(infinity). The element d(1) of the chain sequence, which does not affect the polynomials R-n, has an influence in the derived probability measure mu and hence, in the associated orthogonal polynomials on the unit circle. To be precise, if {M-n}(n=0)(infinity) is the maximal parameter sequence of the chain sequence, then the measure mu is such that M-0 is the size of its mass at z = 1. An example is also provided to completely illustrate the results obtained. | en |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | - |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | - |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | - |
dc.description.sponsorship | Direccion General de Investigacion, Ministerio de Economia y Competitividad of Spain | - |
dc.format.extent | 146-162 | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier B.V. | - |
dc.source | Web of Science | - |
dc.subject | Szegö polynomials | en |
dc.subject | Kernel polynomials | en |
dc.subject | Para-orthogonal polynomials | en |
dc.subject | Chain sequences | en |
dc.subject | Continued fractions | en |
dc.title | A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula | en |
dc.type | outro | - |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | - |
dc.contributor.institution | Universidade Federal de Uberlândia (UFU) | - |
dc.contributor.institution | Universidade Federal do Triângulo Mineiro (UFTM) | - |
dc.description.affiliation | Univ Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | - |
dc.description.affiliation | Univ Fed Uberlandia, Fac Matemat, BR-38408100 Uberlandia, MG, Brazil | - |
dc.description.affiliation | Univ Fed Triangulo Mineiro, Inst Ciencias Tecnol & Exatas, BR-38064200 Uberaba, MG, Brazil | - |
dc.description.affiliationUnesp | Univ Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | - |
dc.description.sponsorshipId | Direccion General de Investigacion, Ministerio de Economia y Competitividad of SpainMTM2012-36732-C03-01 | - |
dc.identifier.doi | 10.1016/j.jat.2014.05.007 | - |
dc.identifier.wos | WOS:000338399100006 | - |
dc.rights.accessRights | Acesso restrito | - |
dc.relation.ispartof | Journal of Approximation Theory | - |
Appears in Collections: | Artigos, TCCs, Teses e Dissertações da Unesp |
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.